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Flow and air-entrainment around partially submerged vertical cylinders
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In this study, a partially submerged vertical cylinder is moved at constant velocity
through water, which is initially at rest. During the motion, the wake behind the cylinder
induces free-surface deformation. Eleven cylinders, with diameters from D = 1.4 to 16 cm,
were tested under two different conditions: (i) constant immersed height h and (ii) constant
h/D. The range of translation velocities and diameters are in the regime of turbulent wake
with experiments carried out for 4500 < Re < 240 000 and 0.2 < Fr < 2.4, where Re
and Fr are the Reynolds and Froude numbers based on D. The focus here is on drag-
force measurements and relatively strong free-surface deformation up to air-entrainment.
Specifically, two modes of air-entraiment have been uncovered: (i) in the cavity along
the cylinder wall and (ii) in the wake of the cylinder. A scaling for the critical velocity
for air-entrainment in the cavity has been observed in agreement with a simple model.
Furthermore, for Fr > 1.2, the drag force varies linearly with Fr.
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I. INTRODUCTION

The flow past ships [1,2], or an emerged body such as a bridge pillar, is a fundamental, familiar,
and fascinating sight. Measurements and modeling of this simple flow can have relevance for
the floating offshore structures and renewable energy systems [3,4]. The disordered motion of
the free-surface in the wake of the cylinder is related to the drag and lift effect experienced by the
cylinder. The wake pattern is responsible for the surface waves and probably the air-entrainment.
Many experiments and numerical works have considered a single vertical cylinder geometry in a
fully submerged situation [5–9]. These works reported the drag-force measurements on the circular
cylinders as a function of the Reynolds number Re defined as Re = UD/ν, with U being the
velocity, D the cylinder diameter, and ν the kinematic viscosity of the fluid. In addition, Schewe [5]
showed the occurrence of a drag crisis at Re ≈ 350 000, which separates two distinct regions
of a nearly constant dimensionless drag coefficient, CD, defined later. In the subcritical regime,
for Re < 350 000, the drag coefficient and the vortex-shedding frequency f , characterized by the
Strouhal number St = f D/U , are almost constant at CD ≈ 1.2 and St ≈ 0.2. In this regime, the flow
is characterized by a turbulent wake with a laminar boundary layer separation [10].

In contrast to fully submerged situations, few studies have been done taking into account the
effect of a free-surface, which modifies the pressure distribution around the cylinder. From a
numerical point of view, the authors of Refs. [11–13] have computed the flow around a wall-
mounted cylinder, the evolution of CD, and the free-surface elevation for Re varying from 27 000
up to 458 000. They have shown that the vorticity and CD vary with depth along the cylinder and
diminish close to the free-surface. Additionally, CD is strongly influenced by free-end effects for
finite-height cylinders [14]. Specifically, Gonçalves et al. [15] reported experimental results in a re-
circulating water flume for cylinders piercing the free-surface with the aspect ratio 0.1 < h/D < 2,
where h is the immersed cylinder height. They focused on forces and particle image velocimetry
measurements for 10 000 < Re < 50 000 and 0.07 < Fr < 0.36; the Froude number Fr is defined as
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FIG. 1. Experimental setup. (a) Schematic tilted view of the flume (drawn up to scale) with the following
dimensions: 34 × 1.2 × 0.9 m. (b) Schematic of the arrangement around the cylinder, view from the side above-
surface. The shaded red area represents the laser sheet used for the optical method. (c) Typical picture side
view. The cylinder is 2.5 cm in diameter and has been translated from left to right with a velocity of 45.8 cm/s,
Re = 11 500, and Fr = 0.9. The depth of the cavity L is represented in the near cylinder wake.

Fr = U/
√

gD, with g = 9.81 m/s2 being the gravitational acceleration. For constant Re, CD values
increase with h/D. Moreover, the velocity fields at Re = 43 000 revealed two recirculation regions:
(i) below the cylinder and (ii) behind the cylinder. The measurements in Chaplin and Teigen [16]
also showed that CD values reach a maximum with respect to Fr. The evolution of CD values is in
agreement with the experiments of Ducrocq et al. [17], who investigated the behavior of subcritical
and supercritical flows for different slopes of a flume with 0.5 < Fr < 2.3 and Re = 50 000.

In recent years, numerical studies have reproduced the flow and drag around free-end cylinders
for different h/D [12,13,17,18], but there is a lack of data for Re around the drag crisis (Re ≈
350 000) and almost no data for strong free-surface deformations and rupture. An important
numerical output is the mean interface elevation [12,13]. Specifically, Keough et al. [19] analyzed
the evolution of the fountain height ahead of the cylinder for Re varying between 45 000 and
380 000. They concluded a dependency of the fountain height with Fr2 and revealed that this
evolution follows the Bernoulli equation for small velocity. In addition, at the downstream side of
the cylinder, the maximum cavity depth L is also believed to scale with Fr2 [16]. The cavity depth
L is schematized in Fig. 1(c). Depending on the cylinder diameter, the free-surface downstream is
locally subjected to strong deformations and air-entrainment in the liquid phase. Benusiglio [20]
recently demonstrated a velocity threshold for air-entrainment in the cavity of a translating vertical
cylinder. This phenomenon can induce drag reduction effects and it is independent of the drag crisis
introduced before. At larger Fr, Hay [21] reported an extensive study of the ventilated regime, where
air reaches the bottom of the cylinder and creates a ventilated cavity with large waves and sprays
above the nominal free-surface. Modern studies of the artificially or atmospherically ventilated
structures (plates or hydrofoils) close to a free-surface are concerned with the stability of ventilated
cavities (e.g., Ref. [22]) or properties such as the void fraction measurements [23].

The goal of the present investigation is to quantify the onset of air-entrainment effects. In
addition, the present study adds new experimental results and discusses new drag measurements
carried out for 4500 < Re < 240 000 and 0.2 < Fr < 2.4 with a specific focus on the onset of
air-entrainment [22,24–26]. This paper is composed of two parts. In the first part, the experimental
setup is described together with an optical method for free-surface height reconstruction. In the
second part, results are presented with the drag-force measurements and the determination of the
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TABLE I. Range of Re and Fr numbers for constant h and constant h/D runs.

h = 23 ± 0.1 cm h/D = 2.55 ± 0.05

D (cm) h/D Remin Remax Frmin Frmax h (cm) Remin Remax Frmin Frmax

1.4 16.50 7 470 12 460 1.45 2.41 3.6 4 340 12 160 0.87 2.41
2.5 9.20 12 460 24 910 1.00 2.10 6.4 9 730 21 880 0.81 1.82
3 7.77 17 440 29 900 1.08 1.84 7.6 15 950 27 900 0.98 1.72
4 5.75 24 900 39 860 1.00 1.60 10.2 19 930 39 860 0.80 1.60
5 4.60 30 630 59 800 0.86 1.71 12.8 28 460 54 550 0.86 1.64
6 3.83 40 840 71 460 0.87 1.52 15.3 29 180 68 080 0.65 1.52
7 3.28 29 900 97 260 0.52 1.74 17.9 32 820 97 260 0.58 1.72
8 2.87 34 040 122 510 0.50 1.70 20.4 34 040 116 710 0.49 1.69
9 2.55 34 880 119 600 0.41 1.42 23.0 34 880 119 600 0.41 1.42
11 2.09 39 860 188 870 0.35 1.62 28.1 39 860 184 370 0.35 1.62
16 1.44 40 860 239 190 0.20 1.20 39.9 39 860 239 190 0.20 1.20

velocity threshold for air-entrainment in the cavity. Finally, the air-entrainment results are compared
with a simple model based on the balance between acceleration and gravity.

II. EXPERIMENTAL SETUP

The cylinders are hollow and made of polymethyl methacrylate (PMMA) with external diameters
of 30, 40, 50, 60, 70, 80, 90, 110, and 160 mm. Their total height is 65 cm and their wall thickness
is 5 mm. The Young modulus of PMMA is 3.1 GPa. There are additional hollow cylinders of 14
and 25 mm made respectively of copper and aluminum. All the cylinders are clogged at their ends.
These cylinders are attached vertically, perpendicular to the water free-surface, and translated on
a carriage riding horizontally along the flume of 34 m in length, 90 cm in width, and 120 cm in
height. The flume is shown schematically in Fig. 1(a). The carriage (162 kg) is driven by a 600-V
ac motor (34 kg), producing a maximum torque of 102 N/m. A protocol is applied where first
the velocity increases linearly along a distance of 3.5 m. Then, the speed is maintained constant
over a distance of 9.5 m, where force measurements are acquired in steady state. Finally, the speed
decreases linearly over a distance of 2 m.

Two windows are located on the sidewalls of the flume, allowing local flow visualization around
the cylinder. The determination of the critical velocity for air-entrainment behind the cylinder is
based on images from a 2000 × 2000 pixel CCD camera (Basler aca2040) with focal length of
50 mm placed at 6 m from the start of the cylinder run. At this position along the flume, the force
measurement (described later) has reached a steady-state value. The spatial resolution of the CCD
camera is 300 μm per pixel and its acquisition frequency is 100 frames per second. Hence, bubbles
smaller than 300 μm cannot be detected. A typical image of the cylinder passing through the field
of view of the camera is shown in Fig. 1(c).

The working fluid is tap water and its height in the flume is constant: H = 40 ± 0.1 cm. The
temperature is monitored; hence the viscosity, the density ρ, and the surface tension σ of water are
corrected to take into account these variations. Indeed between all experimentations, the temperature
of water changes from 16.1 to 21.3 ◦C. In this range of temperature, density variations represent
0.1% [27], while viscosity variations represent 13.3% [28]. The correction allows us to keep the
error for Re between 0.8 and 9.8%. The Bond number [29], Bo = ρgD2/σ , varies between 26 and
3450, which implies that the capillary effects are weak.

Two series of experiments were performed: (i) at constant immersion depth h = 23 ± 0.1 cm
leading to h/D ratios varying between 1.44 and 16.5 and (ii) at constant ratio h/D = 2.55 ± 0.05.
In total, 372 runs were performed, as summarized in Table I, covering a wide range of Re and
Fr. The maximum blockage width of the experiment, D/W , where W is the flume width, is 0.177,
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a value below the critical blockage width of 0.2 for the confinement effect on three-dimensional
dynamics proposed by Griffith et al. [30]. In addition, the International Towing Tank Conference
(ITTC) 2002 [31] requires a vertical confinement, (H − h)/h > 0.8. For the current experiments,
at constant h, the vertical confinement is 0.74, and for constant h/D, this criteria is satisfied for
D < 9 cm.

A. Force measurements

A piezoelectric sensor (Kistler 9327C) placed above the cylinder [see drawing in Fig. 1(b)]
measures the axial force Fx acting on the whole cylinder with a sensitivity of −7.8 pC/N. The
sensor is connected to a charge amplifier equipped with a low-pass filter of 30 Hz. The contribution
of air drag is neglected. Indeed, when h is minimum, the maximum error on CD is about 0.8%.
Force signals are filtered using a moving average on 20 points. In order to measure the effect of
air-entrainment on drag forces, a time average is performed on Fx during 5 s at constant translating
velocity. It is denoted F̄x. The drag coefficient CD can thus be defined as

CD(t ) = 2F̄x

ρhDU 2
. (1)

The Strouhal number, defined earlier, is found to be close to 0.2 ± 0.025 for D < 6 cm, using
the peak of f from the spectrum of lift-force signal. However, for larger diameters, the signal of lift
force is noisy, presumably due to the turbulent flow or vibrations of the carriage. Moreover, the range
of Re studied here and the materials used here suggest natural frequencies which are well separated
from those associated with vortex-induced vibration, which is the motion induced on the elastic
cylinder interacting with the turbulent fluid flow. Such vortex-induced vibration phenomena of the
elastic cylinder deformation would act like an oscillator inducing several modes corresponding to
different vortex sheddings observed by several authors [32–35].

B. Optical method

The parameter that needs to be measured is the elevation of the free-surface. The height at rest H
is well controlled. However, when the cylinder passes through the observation area, the light from
a vertical laser sheet located above the flume and pointing to the free-surface, represented in red
in Fig. 1(b), is shifted vertically from its initial position. The shift is the difference between the
interface at rest and the deformed free-surface. It is proportional to the elevation of the free-surface.
The images are captured by a camera placed on the top of the flume with a low incident angle
to the free-surface. The proportionality is calibrated by recording images of the laser sheet at five
known positions over 25 mm. This technique is able to detect free-surface heights with a precision
estimated to ±0.1 mm.

Figure 2 presents examples of free-surface reconstructions using the optical method for Re =
8500. Two Fr are shown: (a) Fr = 0.5 and (b) Fr = 1.6. When the Fr increases, the free-surface
experiences elevations of larger amplitude. The diagrams allow one to distinguish the fountain
height upstream of the cylinders. It is also possible to see the angle of the V-shaped wakes. For
Fr = 1.6 the V-shaped wake induces a planar wave downstream of the cylinder. Note that this
method and other optical methods (e.g., Ref. [36]) are restricted by the dispersion of the laser due
to the cylinder’s turbulent wake. Hence, the present technique is limited for small Fr and Re.

III. RESULTS AND DISCUSSION

The results consist of drag measurements, surface elevation measurements, and image analysis.
These have been obtained for different cylinder diameters translated at various speeds with constant
immersion h and constant ratio h/D. The different modes of air-entrainment are depicted and used
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FIG. 2. Free-surface height reconstruction for Re = 8500. (a) D = 3 cm and Fr = 0.5. (b) D = 1.4 cm and
Fr = 1.6. The cylinders are indicated by black circles and the white bands correspond to shadow areas of the
cylinders that cannot be analyzed.

to detect the critical velocity for air-entrainment in the cavity. The scaling of the velocity can be
explained using a simple model described below.

A. Drag measurements

In this section, force measurements are reported in a range of Re and Fr, such that the transition to
air-entrainment is observed. Figure 3 presents drag coefficient measurements for different cylinder
diameters as a function of Re, at constant h = 23 ± 0.1 cm and at constant ratio h/D = 2.55 ± 0.05.
Solid (empty) symbols correspond to cases without (with) air-entrainment in the cavity L behind
the cylinder. The error bars correspond to the standard deviation of CD. The results obtained are
compared with the results of Schewe [5] for single-phase flow. Additional results of Refs. [12,15]
on surface-piercing cylinders are represented for the same range of Re and h/D. In accordance with
previous studies, the drag coefficient is found to be about 30% smaller for surface-piercing cylinders
than for single-phase flows. The numerical results of Yu et al. [12] at three different Re numbers
and a constant ratio h/D = 4 are in good agreement with the present measurements. The results
of Gonçalves et al. [15] for a ratio of h/D = 2 show a nearly constant drag coefficient at higher
values than the present study. In their experiments the cylinder is attached to the walls of the flume
and the aspect ratio h/D is varied by varying the water depth. Moreover, their maximum Fr based
on the cylinder diameter is Fr = 0.36, lower than the present values and below the threshold of
air-entrainment. This may explain their highest CD values.

In the present study, the drag coefficient first increases with the Re and then decreases after
air-entrainment has occurred in the cavity downstream from the cylinder. Air-entrainment is defined
when the first bubble is observed or monitored from the camera images (i.e., bubble larger than
300 μm). In Fig. 3, for small h/D or large diameters D, CD values first increase with Re after
the appearance of the first air bubbles. Then, CD values decrease from 10% for the 4-cm-diameter
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FIG. 3. Drag coefficients, CD, as a function of the Reynolds number for different cylinder diameters D.
(a) Constant immersion depth h = 23 ± 0.1 cm and (b) constant ratio h/D = 2.55 ± 0.05. Solid symbols
represent the situation without air-entrainment and empty symbols represent flow with air-entrainment behind
the cylinder. Additional results from the literature are added and the results without free-surface are highlighted
using a gray band.

cylinder to 26% at maximum for the 11-cm-diameter cylinder. The existence of the drag reduction
effect could be explained by the modification of pressure distribution along the cylinder.

In order to study the influence of the gravity effect, the drag coefficient CD is also plotted as a
function of Fr for a constant immersion depth, h = 23 ± 0.1 cm, in Fig. 4(a) and for a constant ratio,
h/D = 2.55 ± 0.05, in Fig. 4(b). As in Fig. 3, solid (empty) symbols correspond to measurements
without (with) air-entrainment in the cavity. In both cases, the evolution of the drag coefficient
clearly shows a transition occurring at Fr ≈ 1.2. For Fr < 1.2, CD is roughly larger for large D
or h/D. For Fr > 1.2, after air-entrainment, CD values are monotonous and seem to vary linearly
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FIG. 4. Drag coefficients, CD, as a function of the Froude number, Fr, for different cylinder diameters
D. Panel (a) corresponds to a constant immersion depth of h = 23 ± 0.1 cm and panel (b) corresponds to a
constant ratio of h/D = 2.55 ± 0.05. Solid symbols represent the situation without air-entrainment and empty
symbols represent flow with air-entrainment in the cavity. For Fr > 1.2, CD is linear and the black line is a
linear fit.

with Fr. A similar linear behavior has also been observed in granular flows around an immersed
cylinder [37].

B. Air-entrainment

Two mechanisms of air-entrainment are revealed: (i) in the wake thanks to vortices and (ii) in a
cavity behind the cylinder. For 1.4 < D < 4 cm (5200 < Re/Fr < 25 000), air-entrainment occurs
in the cavity along the cylinder exclusively. This cavity [12,13] forms viscous cusps where air-
entrainment is systematically injected. Once air bubbles form below the cavity, they are carried
downstream into the wake. The bubbles created by air-entrainment in the cavity have an equivalent
diameter ranging from 6 mm for D = 3 cm to 8.5 mm for D = 16 cm.

For 4 < D < 16 cm, air-entrainment first appears in the wake when Re is increased. Then, as the
velocity increases, air-entrainment also appears in the cavity. For a cylinder of 5 cm in diameter,
Fig. 5(a), at Re = 34 670, shows free-surface deformation without air-entrainment. In Fig. 5(b) at
Re = 39 700, air-entrainment occurs in the cylinder wake. Finally, in Fig. 5(c), at Re = 45 700, the
cavity induces air-entrainment more intensely. For D = 16 cm and higher Re, the mechanisms of
air-entrainment presented in Fig. 6 are similar. Air-entrainment appears in the wake [see Fig. 6(a)]
and then in the cavity [see Fig. 6(b)]. The corresponding movies are available as Supplemental
Material [38].
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FIG. 5. View from the side below-surface of the cylinder of 5 cm in diameter. (a) No air-entrainment at
Re = 34 670 or Fr = 0.97, see supplementary movie 1 [38]. (b) Air-entrainment in the wake at Re = 39 700
or Fr = 1.11; bubbles encircled in blue, see Supplemental Material, movie 2 [38]. (c) Air-entrainment in the
cavity behind the cylinder at Re = 45 680 or Fr = 1.3; bubbles encircled in red, see Supplemental Material,
movie 3 [38]. The dashed lines represent bubble trajectories.

A summary of all our observations is presented in Fig. 7, for both constant h and h/D. In both
cases, several regimes are observed where the different modes of air-entrainment are (i) in the wake,
(ii) in the cavity, and (iii) in the wake and the cavity. Boundaries can be drawn between the different
regimes and it is the purpose of the model below to explain the nature of some of these boundaries.
The main difference between the two diagrams is the area of the wake region, which is wider for
large diameters and constant h. For small h/D, the onset of air-entrainment occurs at smaller Fr
presumably because of the size of the recirculation below the free-surface [15,18]. Additionally,
the fact that the two diagrams are almost indistinguishable suggests that the immersed height h
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FIG. 6. View from the side below-surface of the cylinder of 16 cm in diameter. (a) Air-entrainment in
the wake at Re = 122 500 or Fr = 0.6; bubbles encircled in blue, see Supplemental Material, movie 4 [38].
(b) Air-entrainment in the cavity behind the cylinder at Re = 199 300 or Fr = 1; bubbles encircled in red, see
Supplemental Material, movie 5 [38]. The dashed lines represent observed bubble trajectories.

has little effect on the air-entrainment when h > 23 ± 0.1 cm and h/D > 2.55 ± 0.05. Hence, air-
entrainment is mainly due to the free-surface dynamics and deformation.

Indeed, the main feature associated with air-entrainment is the deformation of the cavity behind
the cylinder. The optical method described earlier and the direct observations of graduations
along the cylinder allowed us to measure the cavity depth L for various conditions. Specifically,
the observations of graduated cylinders are reported in Fig. 8: L/D as a function of Fr2Re. L
represents the mean value from ten snapshots [see Figs. 8(c) and 8(d)]. The error bars are the
maximum observed deviation from the mean value. Clearly, the behavior is nonlinear, typically after
air-entrainment takes place. However, in the range of Fr2Re before air-entrainment, L/D varies
linearly with Fr2Re. The proportionality coefficients seem to decrease with the diameter. These
measurements are insufficient to provide a definite scaling of the cavity height. In fact, the cavity is
unsteady and the liquid motion is more disordered as the velocity increases.

Air-entrainment phenomenon in the cavity could be explained using the model developed by
Benusiglio [20] where the acceleration of the cavity γ is balanced by the gravitational acceleration
g. γ is controlled by the vortex shedding frequency f , calculated from the Strouhal number. In the
range of Re of the present study, St is assumed constant (∼0.2) [5], although some studies have
shown its variability upon the cylinder aspect ratio [18,39,40]. The acceleration γ of the cavity of
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FIG. 7. Flow diagrams Re versus Fr depicting the different air-entrainment regimes: no air-entrainment
(solid symbols), air-entrainment in the cavity (partially solid symbols), and air-entrainment in both the cavity
and the wake (empty symbols) for different cylinder diameters or Re/Fr. (a) For constant immersion h =
23 ± 0.1 cm and (b) for constant h/D = 2.55 ± 0.05. The lines are guides to the eyes delimiting the different
air-entrainment regimes.

depth L is defined as follows:

γ = L f 2. (2)

In Eq. (2), L is determined using Bernoulli’s equation between two positions upstream and
downstream of the cylinder. At the upstream position the mean flow velocity is U , whereas at the
downstream position the flow velocity is taken as the maximum velocity U of a Rankine vortex
�/2πa [41], where � is the circulation around half of the cylinder DU/2 and a represents the core
radius of the vortex. The parameter a scales with D/

√
Re, the boundary layer thickness [42]. With
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FIG. 8. (a) Nondimensional cavity depth L/D as a function of Fr2Re, for different diameters. The inset
(b) is a zoom restricted to the regime of no or weak air-entrainment, where the continuous lines are linear
fits. Solid symbols represent the situation without air-entrainment and empty symbols represent flow with
air-entrainment in the cavity. Panels (c) and (d) are snapshots of the cavity, view from the back, typical of
no-air entrainment and air-entrainment, respectively. The continuous vertical red lines represent the emerged
cylinder walls and the dashed blue line represents the free-surface at rest.

these assumptions, Benusiglio [20] proposed a scaling for L:

L ∝ DU 3

gν
, (3)

which has not been validated experimentally or numerically. However, our current measurements
(see Fig. 8), using the direct cavity depth observations, seem to be consistent with L/D ∝ Fr2Re,
which is equivalent to Eq. (3). Finally, air-entrainment occurs when γ � g; therefore Eq. (2) leads
to the critical velocity Uc for air-entrainment in the cavity L:

Uc ∝ (νg2)
1
5 D

1
5 . (4)

Figure 9(a) shows the critical velocity Uc for air-entrainment in the cavity L as a function of
D at constant immersion h = 23 ± 0.1 cm and constant h/D = 2.55 ± 0.05. The error bars of
Uc correspond to the velocity step between the maximum velocity when air-entrainment is not
observed and the velocity where the first bubble appears. The evolution of Uc is fitted with power
laws of D 0.2±0.02 for h/D � 2.55 and D 0.22±0.02 for h � 23 cm. Experimental results show good
agreements with the theoretical model introduced with Eq. (4). The simple model based on energy
conservation with Bernoulli’s equation predicts the appearance of air-entrainment in the cavity.
Additional data from Benusiglio [20] are also plotted and fit well the present data for D � 6 cm.
For larger diameters, the critical velocity given by Benusiglio [20] refers to air-entrainment in
the cylinder wake like in Fig. 5(b), while our present data refer only to air-entrainment in the
cavity. Figure 9(b) presents the evolution of Rec as a function of Frc, based on the critical velocity
Uc. The dimensionless form of Eq. (4) is Rec ∝ Fr−4

c . The evolution of Rec is fitted with a
power law of Fr −3.3±0.62

c for h = 23 ± 0.1 cm and Fr −4.7±0.51
c for h/D = 2.55 ± 0.05, in good

agreement with the prediction of the model. The red shaded area refers to the range of dimensionless
parameters where no air-entrainment in the cavity occurs. The black dashed-dotted line represents
the threshold Re/Fr � 25 000 above which air-entrainment occurs in the wake and in the cavity.
Hence, air-entrainment requires large inertial effects or strong gravity effects. It is interesting to
note that the stability diagram in Fig. 9(b) is consistent with the results of Kumagai et al. [43] for a
horizontal cylinder translating beneath an air-water interface.
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FIG. 9. (a) Critical velocity Uc for air-entrainment in the cavity L as a function of the cylinder diameter
D for constant immersion h = 23 ± 0.1 cm and constant h/D � 2.55 ± 0.05. Results of Benusiglio [20] are
plotted with blue crosses. The green dotted line represents the power law D 0.22±0.02 for the constant h/D case
and the red solid line represents the power law D 0.20±0.02 for h = 23 ± 0.1 cm. (b) Critical Reynolds number,
Rec, as a function of the critical Froude number, Frc. The black dashed-dotted line represents Re/Fr � 25 000.
The shaded region corresponds to no air-entrainment. The inset (c) is the same data in log-log scale.

IV. CONCLUSIONS

Experimental results on the dynamics of the flow around a vertical translated cylinder have been
presented. These deal with the turbulent regime before the so-called fully ventilated regime when
air reaches the bottom of the cylinder. There is a critical velocity for the onset of air-entrainement.
Then, three modes of air-entrainment are observed depending on the diameter and the translating
velocity. For D � 4 cm, air-entrainment only occurs in the cavity downstream of the cylinder. For
D � 5 cm, air-entrainment first appears in the wake and then also in the cavity when Re or Fr is
increased. This study focuses on air-entrainment in the cavity, where forces, flow visualization, and
critical velocities for air-entrainment are reported at constant h or h/D. CD show an increase of
the drag coefficient with Re followed by a decrease after air-entrainment occurred in the cavity. A
similar evolution is observed for drag-force measurements versus Fr. Moreover, for Fr > 1.2, the
drags for all diameters overlap and vary linearly with Fr. The threshold velocity for air-entrainment
in the cavity scales as Uc ∝ D 0.2, i.e., Rec ∝ Fr−4

c , which is in good agreement with the scaling of
the model of Benusiglio [20]. In the future, the shape of the cavity will be studied in more detail in
order to quantify the contribution of wetting properties [29,44] and the capillary-gravity waves.
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