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A B S T R A C T   

The objective of this work is to give new insight into the stability of thin polymer films under shear, in order to 
pave the way to a better control of the nanolayer coextrusion process. To do so, a finite-difference numerical 
scheme for the resolution of the thin film equation was set up taking into account capillary and van der Waals 
(vdW) forces. This method was validated by comparing the dynamics obtained from an initial harmonic 
perturbation to established theoretical predictions. With the addition of shear, three regimes have then been 
evidenced as a function of the shear rate. In the case of low shear rates the rupture is delayed when compared to 
the no-shear problem, while at higher shear rates it is even suppressed: the perturbed interface goes back to its 
unperturbed state over time. In between these two limiting regimes, a transient one in which shear and vdW 
forces balance each other, leading to a non-monotonic temporal evolution of the perturbed interface, has been 
identified. While a linear analysis is sufficient to describe the rupture time in the absence of shear, the non-
linearities appear to be essential otherwise.   

1. Introduction 

Nanolayer coextrusion, an innovative process allowing the combi-
nation of at least two polymers in a stratified film or membrane having a 
total thickness on the order of 100 μm but composed of thousands of 
alternating nanometric layers, has gained an increased interest in the 
past few years [1,2]. This process offers unique opportunities to explore 
fundamental questions on the effects of confinement on polymer prop-
erties, such as crystallization [3], chain mobility and structural relaxa-
tion [4–6] or interfacial phenomena [7–9], as well as to design new 
nanostructured materials with novel or enhanced properties (mechani-
cal, optical, conductive, gas barrier properties, etc.) [10]. 

However, one strong limitation of the process lies in possible layer 
breakups, observed by several authors on different polymer pairs when 
reducing the layer thickness [11–13]. In a previous study, we investi-
gated this phenomenon in polystyrene (PS)/poly(methyl methacrylate) 
(PMMA) nanolayered films [14] and evidenced the existence of a critical 
thickness around 10 nm, below which the layers rupture spontaneously, 
independently of the processing conditions. We then proposed a mech-
anism responsible for this layer breakup, similar to the one leading to the 
dewetting of an ultra-thin polymer monolayer deposited on a solid 
substrate, as firstly observed by Reiter et al. [15] and subsequently 
explained by Brochard et al. [16]. 

In nanolayer coextrusion, when the layer thickness is very small - 
typically below 100 nm-, attractive long-range forces i.e. van der Waals 
(vdW) forces between the two adjacent layers cannot be neglected. 
Below a critical thickness around 10 nm, they become dominant over the 
stabilizing capillary forces. In consequence, they may amplify any 
interfacial instability such as the one due to thermal fluctuations, 
eventually leading to the layer breakup. Several model experiments on 
spin-coated three-layer systems were subsequently proposed to confirm 
this scenario [17,18]. Comparing the characteristic dewetting times in a 
model trilayer system to typical residence times in the nanolayer coex-
trusion process, we also suggested that the shear induced in the nano-
layer process may delay the layer rupture, i.e. may stabilize the layers 
against rupture. 

Similar questions have been addressed for many years in the field of 
fluid mechanics, where the stability of ultra-thin liquid films has been a 
concern in several industrial applications, such as coating processes [19] 
or lithographic printing [20]. The stability of thin films has been the 
subject of many theoretical and experimental studies (see for example 
the reviews of Oron et al. [21] and Craster et al. [22]). The pioneering 
works of Vrij [23] and Sheludko [24] focused on the mechanism of 
spontaneous rupture of a thin liquid film deposited on a solid substrate. 
Using slightly different approaches - thermodynamic treatment for 
Sheludko and diffusion equation for Vrij-, they showed for the first time 
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that the amplification by vdW forces of small irregularities at the film’s 
free surface may lead to a decrease of the total free energy despite the 
increasing surface, and consequently induce film rupture. They pro-
posed a critical thickness below which the destabilizing vdW forces 
become dominant over the capillary forces, a critical wavelength of the 
initial irregularities above which the film is unstable, as well as a growth 
rate of the perturbation and a characteristic time for rupture. 

A more systematic and rigorous approach, developed by Ruckenstein 
and Jain [25], was based on a linear stability analysis of the 
Navier-Stokes equations. They assumed that the amplification of small 
perturbations at the film interface generates a flow in the film. Due to its 
small thickness, the lubrication approximation was employed. The 
long-range vdW forces were accounted for through a disjoining pressure 
term as proposed by Derjaguin [26]. Even if this stability analysis is 
theoretically valid for small perturbations only, information about the 
conditions leading to film rupture could be obtained. In particular, 
Ruckenstein and Jain showed that the critical wavelength of the initial 
periodic disturbance leading to rupture was much larger than the film 
thickness. These results laid the groundwork for subsequent studies that 
investigated the nonlinear effects on thin film rupture using either a 
perturbative analysis [27] or numerical computations [28]. In the latter 
study, the authors derived a highly nonlinear partial differential equa-
tion, a so-called thin film equation, that describes the evolution of the 
surface of a thin film subject to: i) viscous stresses, ii) a stabilizing 
Laplace pressure, and iii) a destabilizing disjoining pressure. The main 
qualitative features of the rupture in these nonlinear studies were similar 
to the ones in the linear analysis. Still, some quantitative differences 
were obtained concerning the breakup time in particular, that was found 
to be systematically inferior in the nonlinear studies compared to the 
linear analysis. This is likely due to the fact that the latter analysis un-
derestimates the destabilizing effect of the long-range forces. Those 
various approaches were extended later to multilayer films [20,29,30]. 

The effect of a shear flow on a thin film rupture was first explored by 
Kalpathy et al. [31] for a liquid-liquid interface in a stratified flow and 
by Davis et al. [32] in a thin liquid film. They showed that when shear is 
imposed, the film rupture is delayed and that above a critical shear rate, 
the rupture is even suppressed. Beyond purely hydrodynamic explana-
tions, another possible effect in practical systems could be the 
shear-induced modification of the seed thermal fluctuations [33,34]. In 
the present study, we investigate the impact of shear on the stability of a 
polymer thin film, using a numerical approach [35] inspired by Bertozzi 
and Zhornitskaya [36,37]. In particular, by systematically studying 
various combinations of shear rates and Hamaker constants governing 
the intensity of vdW forces, we discuss the existence of several regimes 
for the thin film stability. 

2. Problem position and model 

2.1. Problem position 

The problem studied is represented in Fig. 1. A glassy polymer (such as 
PS) thin film of nominal thickness h0 typically below 100 nm is lying on a 

substrate and heated well above its glass transition temperature Tg. For a PS 
film, Tg is about 100 ◦C and the temperature of the study, similar to the 
processing temperature, would be close to 200 ◦C. At this temperature, the 
polymer can be considered as a Newtonian fluid with a constant viscosity η, 
on the order of 104 Pa s. The viscosity depends on molecular weight, but the 
value indicated here is typical of polymers used in extrusion [14]. The 
surface tension of the polymer with air is noted γ (∼ 27.7 mN/m for PS at 
200 ◦C [38]) and the Hamaker constant for the substrate/polymer/air 
system is noted AH. The value of the latter is difficult to measure experi-
mentally, and though the typical order of magnitude of Hamaker constants 
is similar for most systems, i.e. ~ 10−19 J, several values can be found in the 
literature. For an air/PS/SiO2 system, Seemann et al. [39] provide 
AHair/PS/SiO2

= 2.2 10−20 J, similar to the value obtained using material 
refractive indices and dielectric constants from the literature [40,41]. In the 
present study, to limit the numerical rupture time which increases with 
decreasing values of the Hamaker constant, we restrict AH to values be-
tween 5 10−19 and 5 10−18 J for initial film thicknesses between 10 and 100 
nm. Shear, characterized by a shear rate β, is applied from right to left. 
Different values of shear rates will be explored, and their effect on an 
interfacial perturbation monitored through the evolution of the profile 
thickness h(x, t) over time t and space along the x-axis. 

2.2. Governing equation 

Taking into account the previous considerations and a spatial 
invariance along the horizontal direction y, the general thin film equa-
tion [21] is assumed to describe the dynamics of the thickness profile 
h(x, t) = h0 + δH(x, t), where δH(x, t) is the perturbation field with respect 
to h0. The thin viscous film is experiencing Laplace and disjoining 
pressures, as well as shear stresses. Neglecting gravitational forces, the 
thin film equation reads in our case: 

∂th + γ
3η∂x

(
h3∂3

xh + 3AH

6πγh∂xh
)
− βh∂xh = 0 . (1) 

Interfacial tension and viscosity are considered constant and possible 
changes as a function of the film thickness are also neglected in this 
study. To solve numerically the equation, one introduces the following 
dimensionless variables and parameters: 

H = h
h0

; ΔH = δh
h0

; X = x
h0

; T = γt
3ηh0

; Λ = λ
h0

K = kh0 =
2π
Λ ; A = AH

6πγh2
0

; B = 3βηh0
2γ ,

(2)  

where all the capital letters refer to dimensionless parameters, λ is the 
wavelength of the initial harmonic perturbation (see below) and k is the 
associated wavenumber. Note that both A and B depend on the nominal 
film thickness and surface tension. Moreover, to a given value of A 
corresponds an infinite number of couples (AH, h0). In the current study, 
the explored range of these coupled parameters is summarized in 
Table 1. The dimensionless thin film equation can then be written as: 

Fig. 1. A viscous polymer film, of viscosity η and nominal thickness h0, is placed atop a rigid substrate. External shear rate β, surface tension γ and van der Waals 
forces (with Hamaker constant AH) compete with each other, and generate a viscous flow that can either result in growth or damping of an initial interfacial 
perturbation. At horizontal position x and time t the film profile is h(x, t). Invariance along y is assumed. 
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∂T H + ∂X
[
H3(∂3

XH + 3AH−1∂XH
) ]

− 2BH∂XH = 0 . (3)  

2.3. Numerical method and boundary conditions 

The numerical procedure used here is a finite-difference method for 
thin-film flows [35]. Specifically, we aim at following the temporal and 
spatial evolution of an initial harmonic perturbation of wavelength λ. In 
contrast to previous studies (Davis et al. [32] or Kalpathy et al. [31]), we 
do not use periodic lateral boundary conditions here, but a large spatial 
window size instead. To optimize the computational time and to limit 
the artificial lateral boundary effects, we consider a truncated initial 
perturbation, with 1.5 periods, completed at its edges by a flat profile. 
We impose flat conditions at the boundaries of the numerical domain. 
Finally, we have checked that the chosen number of periods at the center 
and the size of the spatial window do not affect the results. 

At T = 0, the initial profile of the film is spatially discretized over M 
segments, with a fixed spatial step ΔX and a spatial index i ∈ [0, M − 1], 
as: 

H[ΔX(i− i0), 0] = 1 + ΔHcos[2πΔX(i− i0)/Λ], (4)  

where i0 is the index of the window center. The numerical integration of 
Equation (3) along time T is then performed using a 4th-order Runge- 
Kutta scheme [35]. In order to be self-consistent with the lubrication 
framework and with the window-size constraint above, we impose the 
following scale separation: ΔX ≪Λ ≪ MΔX. 

3. Results 

3.1. Linear stability analysis 

The effect of shear on the stability of a thin film can be estimated, as a 
first attempt, using a linear stability analysis. We stress that while such 
an approach allows one in principle to predict whether an infinitesimal 
disturbance at the surface is amplified or attenuated, it does not allow 
for the quantitative study of rupture, which is outside the scope of 
linearity. We consider the evolution of an initial harmonic perturbation 
of small amplitude ΔH0 around the nominal dimensionless thickness of 
the film (equals to 1). The perturbative field ΔH comprises a time- 
dependent factor eΓT, where Γ is the growth rate of the perturbation 
(the perturbation is amplified if Γ > 0 and damped if Γ < 0) and a space- 
dependent oscillatory factor eiKX: 

H = 1 + ΔH (5a)  

ΔH = ΔH0eΓT eiKX . (5b) 

This leads, after substitution in Equation (3), to the following 
dispersion relation: 

Γ = K2(3A−K2) + 2BiK . (6) 

The growth rate of the perturbation is a complex number, with a real 
part ΓR and an imaginary part ΓI. The real part evaluates the actual rate 
at which the perturbation is amplified or damped. It appears to be in-
dependent of the shear and thus coincides with the solution of the no- 
shear case, i.e. for B = 0 (see Refs. [25,28]). A consequence of such a 
feature is that a numerical treatment of the nonlinear (i.e. beyond linear 
analysis) thin film equation will be needed in order to understand 
further the potential role of shear in the dewetting process. The 

evolution of ΓR as a function of K, obtained from Equation (6), is shown 
in Fig. 2 and compared to numerical solutions of Equation (3), for 
different values of A, including ones outside the range studied later on 
with shear. It can be seen that in all cases the numerical results are 
self-consistently in quantitative agreement with the analytical predic-
tion. Besides, one observes a maximum Γmax = Γ(Kmax), defined by: 

Kmax =
̅̅̅̅̅̅
3A
2

√

Γmax =
9
4A2.

(7) 

Note that the wavelength Λmax = 2π/Kmax of this fastest growing 
mode will be used as a wavelength Λ in all numerical computations 
below, in order to reduce the total computational time. 

Due to the imaginary part ΓI, the perturbation is transported and 
shifted in the shear direction. This shift is explicitly highlighted when 
injecting Equation (6) into Equation (5b), leading to: 

ΔH = ΔH0 eΓRT eiK(X+2BT). (8) 

Thus, the perturbation propagates along − X (i.e. the shear direction) 
with a speed equal to 2B. 

3.2. Rupture without shear 

Here, an initial harmonic perturbation with an amplitude ΔH0 = 0.1 
is considered, and Equation (3) is solved with B = 0. Due to vdW forces, 
the film may undergo a possible rupture after a time which depends on 
the value of the dimensionless Hamaker constant A. Since the numerical 
scheme is only stable for strictly positive H values, a criterion for rupture 
has been set as the time TR at which the spatial minimum of H reaches 
0.1. We have checked that other small-enough values of this arbitrary 
threshold do not change qualitatively the results. 

A typical evolution of the film profile is given in Fig. 3 for A = 0.01. It 
is seen that the amplitude of the interfacial perturbation increases 
monotonously over time, until the film ruptures (at TR = 4800 in this 
case, with our criterion above). 

We now turn to the detailed study of the rupture time. First, the effect 
of the initial amplitude of the perturbation is presented in Fig. 4a for 
different values of A. Apart from a numerical prefactor of order unity, 
the decrease of the dimensionless rupture time TR with increasing initial 

Table 1 
Explored ranges for the parameters of the problem.  

Parameters Dimensionless parameters 

h0 
nm 

AH 
J 

β 
s−1 

A B 

[10−100] [5 × 10−19–5 × 10−18] [0.2–200] [0.001–0.1] [10−5–1]  

Fig. 2. Real part ΓR of the growth rate of the perturbation as a function of the 
angular wavenumber K = 2π/Λ, as obtained from Equation (6) (lines), as well 
as from numerical solutions of Equation (3) (symbols), for different values of 
the dimensionless Hamaker constant A, as indicated. 
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Fig. 3. (top) Film profiles H(X, T) versus the horizontal position X, at three different times T as indicated, as obtained from the numerical solution of Equation (3) 
with A = 0.01 and B = 0, for an initial harmonic perturbation with ΔH0 = 0.1 and Λ = Λmax. (bottom) Spatiotemporal diagram of the interfacial evolution, with X and 
T as axes, and the magnitude of H represented using the color code indicated below. (For interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 

Fig. 4. (a) Dimensionless rupture time TR as a function of the inverse of the dimensionless perturbation amplitude ΔH0, for different values of the dimensionless 
Hamaker constant A. The solid line is a best fit to Eq. (9). (b) Dimensioned version of the rupture times obtained for δH0/h0 = 0.1 in panel a) with the values of interest 
presented in Table 1. The solid line is Eq. (10). 
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amplitude ΔH0 as measured from our numerical solutions follows the 
linear-stability extrapolation law proposed by Sharma [27]: 

TR = 1
Γmax

ln
( 1

ΔH0

)
. (9) 

We stress that the expression predicted by Sharma is equivalent to 
the one by Ruckenstein [25] provided that ΔH0 = 1/e. Indeed, the 
expression of Ruckenstein corresponds by definition to the time constant 
of the exponential growth and is therefore independent of ΔH0. Simi-
larly, Ruckenstein’s expression is similar to the one predicted by Vrij 
[23], the two expressions quantitatively differing by a factor 2 only. 
These three theoretical estimates of TR come from a similar linear 
approximation, and differ only by the exact convention chosen. 

Putting back dimensions, Equation (9) is equivalent to: 

tR = 48π2γηh5
0

A2
H

ln
(

h0
δh0

)
, (10)  

where δh0 is the initial amplitude of the perturbation. As a guide for 
practical purposes, and using the values of the physical parameters η and 
γ provided above, the rupture time tR is plotted in Fig. 4b as a function of 
the ratio h5

0/A2
H, with real units, for the case where δH0/h0 = 0.1. 

Apart from the numerical prefactor of order unity already mentioned 
above, it appears that Sharma’s prediction describes well the data over 
10 decades. This suggests that nonlinear effects are not essential to 
understand the main qualitative features of the film rupture process – 
under no shear. 

3.3. Effects of shear 

3.3.1. Influence of the shear rate 
Various finite shear rates (B ∕= 0) have been tested within the same 

numerical framework as the one described above. The low-shear-rate 
behavior (B ≪ A) is presented in Fig. 5a, while the high-shear-rate 
behavior (B ≫ A) is presented in Fig. 5b. Over time, the perturbation 
moves along the x-axis in the direction in which the shear is applied, 
from right to left. At low shear rates, the behavior is similar to what is 
observed without shear: the perturbation grows with time and eventu-
ally leads to film rupture. At high shear rates, however, the perturbation 
is damped, leading to what could be described as a healing of the 
interface (i.e. going back to an unperturbed flat initial state) at long 
times. 

3.3.2. Critical shear rate 
To understand more quantitatively the effect of shear on the per-

turbed interface profile, the maximum Hmax and minimum Hmin of the 
latter are plotted in Fig. 6 as functions of time, and for different shear 
rates. At low shear rate, it is seen that the time of rupture increases 
compared to the case without shear. At high shear rate, healing is 
confirmed by the fact that both extrema converge to 1, i.e. towards the 
flat-interface situation. 

It is now interesting to examine what happens at intermediate shear 
rates, i.e. B close to A. Typical results are presented in Fig. 7. Here, over 
the total computational time, no rupture is observed, but no healing 
either. As seen in the inset, the evolution of the perturbation, charac-
terized as in Fig. 6, is not monotonic, suggesting the existence of a 
transient regime where vdW forces and shear compete with each other 
over times longer than the total time computed. 

We now investigate the influence of shear on the film rupture. Fig. 8 
shows the dimensionless rupture time TR as a function of the dimen-
sionless shear rate B. For low shear rates, the rupture time is only slightly 
higher than the value without shear. Then, for values of B higher than ~ 
0.005, TR increases sharply, and becomes higher than the total compu-
tational time for B > 0.014. For B > 0.03, perturbation damping and 
healing of the interface are observed. A so-called “transient regime” is 
observed for 0.014 < B < 0.03. A similar trend was found in a previous 
numerical simulation (Davis et al. [32]) using periodic boundary con-
ditions with a coarse calculation domain. Specifically, Davis et al. [32] 
observed that the rupture is suppressed for B ≈ 10 A. The current sys-
tematic study allows us to construct a novel phase diagram, exhibiting in 
particular: i) perturbation damping for values as low as B = 3 A; ii) the 
existence of a narrow transient regime with a non-monotonic variation 
of the interface profile along time, resulting in neither rupture nor 
healing within the accessed temporal and spatial window. 

Interestingly, a natural dimensionless critical shear rate Bc can be 
identified in the model. Indeed, by balancing the Hamaker and shear 
contributions in Equation (3), recalling that we have set K = Kmax, and 
invoking Equation (7), one gets: 

Bc ∼ 3AK ∼ 3
̅̅̅
3
2

√
A3/2 . (11) 

For A = 0.01, the latter estimate gives Bc ≈ 0.0037, which corre-
sponds approximately to the onset value of B in Fig. 8 after which TR 
sharply increases with B. 

The study above can be reproduced for several values of A. A similar 

Fig. 5. (top) Film profiles H(X, T) versus the horizontal position X, at three different times T as indicated, as obtained from the numerical solutions of Equation (3) 
with A = 0.01, for an initial harmonic perturbation with ΔH0 = 0.1 and Λ = Λmax. The dimensionless shear rates are fixed to B = 0.001 and B = 0.1, in panels (a) and 
(b) respectively. (bottom) Corresponding spatiotemporal diagrams of the interfacial evolutions, with X and T as axes, and the magnitude of H represented using the 
color codes indicated below. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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Fig. 6. Temporal evolution of the maximum (Hmax) and minimum (Hmin) values of the dimensionless film profile, for three applied dimensionless shear rates, B = 0, 
0.005, 0.1, as obtained from numerical evolutions such as the ones in Fig. 5. 

Fig. 7. (top) Film profiles H(X, T) versus the hori-
zontal position X, at four different times T as indi-
cated, as obtained from the numerical solution of 
Equation (3) with A = 0.01 and B = 0.019, for an 
initial harmonic perturbation with ΔH0 = 0.1 and 
Λ = Λmax. Inset: temporal evolutions of the profile’s 
extrema, as in Fig. 6. (bottom) Corresponding 
spatiotemporal diagram of the interfacial evolution, 
with X and T as axes, and the magnitude of H rep-
resented using the color code indicated below. (For 
interpretation of the references to color in this 
figure legend, the reader is referred to the Web 
version of this article.)   
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trend for A = 0.1 et A = 0.001 is systematically recovered (shown in the 
Supplementary Material). Furthermore, a master curve is obtained in 
Fig. 9, when plotting the ratio of the rupture time with shear and the 
rupture time without shear as a function of the ratio B/A. First, we 
recover the monotonic increase of the rupture time with shear rate. 
Secondly, the master rescaling is expected if, near a rupture event, one 
neglects the capillary Laplace contribution over the Hamaker one in 
Equation (3), divide the whole equation by A, and absorb A in the 
definition of time. 

Finally, let us discuss the layer stability in nanolayer coextrusion, 
from the results obtained here. In our study [14] on a PS/PMMA 
multilayer system, we made the hypothesis that rupture in multilayer 
films is induced by thermal fluctuations of amplitude 

̅̅̅̅̅̅̅̅̅̅̅̅̅
kBT/γ

√
∼ 10−9 

m (where kB is the Boltzmann constant) [42] at the interface between 

adjacent layers, that are then amplified by vdW forces. Balancing 
capillary forces with vdW ones, the critical thickness was defined as: 

h∗ ∼
(

AH
3πγ

)1/2
. (12) 

Using AH ~ 10−18 J [40] and γ ~ 1 mN/m [43], we obtained h* ~ 
10−8 m, in good agreement with our experimental observations. 

In the present study, we showed that rupture can be suppressed for B 
~ 3A. Assuming that our simple model can be employed in the case of a 
multilayer system too, and putting back dimensions through Equation 
(2), we get a critical shear rate for rupture suppression: 

βs ∼
AH

3πηh3
0
. (13) 

Using h0 ~ h* and the values of the physical parameters provided 
above, we obtain βs ≈ 10 s−1. Interestingly, the latter value is typical of 
shear rates occurring during nanolayer coextrusion [44]. Since βs de-
creases rapidly as h0 increases, it may explain why stable layers with 
thicknesses as small as 20 nm can be formed via this process – despite a 
processing time (~ 1 min) much larger than the rupture times predicted 
by Vrij, Ruckenstein and Sharma in a no-shear situation (~ 1 s, see 
equation (10)). 

4. Conclusion 

We have developed a numerical model to study the effect of shear on 
the stability of an ultra-thin polymer film, taking into account capillary 
and vdW forces. We identified three regimes: i) a rupture regime at low 
shear rates, with a rupture time systematically larger than the one in the 
no-shear case, the latter being in agreement with the expressions pre-
dicted by Vrij, Ruckenstein and Sharma; ii) a transient regime in which 
shear and Hamaker forces compete with each other over the whole time 
window, leading to a non-monotonic temporal variation of the per-
turbed interface; iii) a regime at high shear rates in which shear sup-
presses rupture: a perturbed interface will evolve towards a flat interface 
over time. Interestingly, while a linear analysis is sufficient to describe 
the rupture time in the absence of shear, the nonlinearities appear to be 

Fig. 8. Dimensionless rupture time TR as a function 
of the dimensionless applied shear rate B, for a 
dimensionless Hamaker constant A = 0.01. When 
TR becomes larger than the total computational 
time, no rupture is observed, and for large enough B 
healing of the profile is even observed, as summa-
rized by the colored areas. The vertical dashed line 
indicates Bc ≈ 3.7 10−3, according to Equation (11). 
(For interpretation of the references to colour in this 
figure legend, the reader is referred to the web 
version of this article.)   

Fig. 9. Rupture time rescaled with the no-shear rupture time as a function of 
the ratio between dimensionless shear rate B and dimensionless Hamaker 
constant A, for different values of A, as indicated. 
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crucial in presence of moderate shear. In the future, it is planned to study 
more realistic polymer shear film rupture by extending the study of 
viscoelastic film equation [45] to shear. This study paves the way to a 
better analysis and control of the stabilizing and destabilizing effects in 
nanolayer coextrusion process. 
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Nomenclature 

vdW van der Waals 
Tg glass transition temperature 
γ surface tension of the polymer (mN/m) 
AH Hamaker constant (J) 
h* critical thickness for rupture (nm) 
h polymer film thickness (nm) 
h0 initial polymer film thickness (nm) 
β shear rate (1/s) 
t time (s) 
x horizontal coordinate (m) 
δ perturbation amplitude 
η polymer viscosity (Pa.s) 
λ wavelength of the perturbation (m) 
k perturbation wavenumber (1/m) 
i index of the computation window 
tR time of rupture (s) 
δH0 amplitude of the perturbation (nm) 
βs critical shear rate for rupture suppression (1/s) 
H dimensionless height 
ΔH dimensionless perturbation height 
X dimensionless horizontal coordinate 
T dimensionless time 
Λ dimensionless perturbation wave length 
K dimensionless wavenumber 
A dimensionless Hamaker constant 
B dimensionless shear rate 
Γ dimensionless growth rate of the perturbation 
Kmax dimensionless wavenumber of the fastest growing mode 
Γmax dimensionless growth rate of the fastest growing mode 
Λmax dimensionless wavelength of the fastest growing mode 

ΓR real part of the dimensionless growth rate Γ 
TR dimensionless time of rupture 
Hmax maximum value of the dimensionless height 
Hmin minimum value of the dimensionless height 
Bc dimensionless critical shear rate 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.polymer.2021.124283. 
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Fig.SI.1: Dimensionless rupture time TR as a function of the dimensionless applied shear rate B, for a 
dimensionless Hamaker constant A = 0.1 and A = 0.001.  
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