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We report the results of a combined experimental and numerical study of specific finite-amplitude
disturbances for transition to turbulence in the flow through a circular pipe with a sudden expansion.
The critical amplitude thresholds for localized turbulent patch downstream of the expansion scale with
the Reynolds number with a power law exponent of 2.3 for experiments and 2.8 for simulations. A
new mechanism for the periodic bursting of the recirculation region is uncovered where the asymmetric
recirculation flow develops a periodic dynamics: a secondary recirculation breaks the symmetry along
the pipe wall and bursts into localized turbulence, which travels downstream and relaminarises. Flow
visualizations show a simple flow pattern of three waves forming, growing, and bursting. Published
by AIP Publishing. https://doi.org/10.1063/1.5022872

The flow in a circular pipe with a sudden expansion
is encountered in many situations, from heat exchangers to
the combustion chambers, where the turbulent flow proper-
ties are well tabulated.1,2 Yet, the transitional regime is not
well understood because it is still challenging to perform con-
trolled experiments. Furthermore the computation requires
high resolution to reproduce the details of the transition.

The flow past axisymmetric sudden expansion has previ-
ously been studied experimentally3–5 and numerically.6–9 The
control parameter is the Reynolds number based on the inlet
diameter, d, as Re = Ud/⌫, where U is the inlet mean flow veloc-
ity and ⌫ is the kinematic viscosity of the fluid. Recent linear
stability analysis of the 1:2 expansion6,10 has found a critical
Reynolds of several thousands before the transition takes place.
Transient growth analysis7 consistently found that infinitesi-
mal perturbations experience maximum linear transient energy
growth for Reynolds numbers of several hundreds. In practice,
experiments5 report asymmetric flow at Re ' 1139 ± 10 and
unsteady flow at Re ' 1400. This supports the idea that imper-
fections and the presence of finite amplitude disturbances are
responsible for the transition.

Hence, this flow is considered to have sub-critical transi-
tion. Several numerical studies8,9 have found early transition
due to finite amplitude perturbations using a tilt type perturba-
tion (along one radial direction) or a vortex type perturbation
(along the axial direction with a diameter a quarter of the inlet
pipe diameter). These perturbations lead to three-dimensional
instabilities and localized turbulent patches. The onset of local-
ized turbulence in shear flows can be identified through the
minimum energy threshold of perturbations. For instance, in
plane Couette flow, Duguet et al.11 identified several instability
mechanisms (Orr mechanism, oblique wave interaction, lift-
up, streak bending, streak breakdown, and spanwise spreading)
depending on the perturbation energy that scales as a func-
tion of Re 2.7. For planar Poiseuille flow, Lemoult et al.12

have provided a scaling law with the critical amplitude of the

disturbance scaling with Re 1. In the case of sudden expan-
sion in the circular pipe, Sanmiguel-Rojas and Mullin8 found
a scaling with the critical tilt amplitude varying as Re 0.006.
One of our goals in this work is to measure and simulate a
similar effect in expansion flow.

Moreover, transition to turbulence in the sub-critical
regime, 1000 . Re . 4000, has been reported to experi-
ence turbulent bursting phenomena.3 A turbulent burst cycle
is the transition between a laminar flow to a turbulent one fol-
lowed by a relaminarization. A self-sustained bursting cycle
in the boundary layer is related to the presence of streaks,
lift-up, oscillations, and breakdown.13 Bursts usually appear
as an interaction of wave modulation or due to free-stream
turbulence.14 By constant, diameter pipe flow, bursting has
been reported by Wygnanski and Champagne15 but only in
the entrance region. Here a description of quasi-periodic
bursting is carried out using space-time diagrams and mon-
itoring of the flow patterns during the cycle. The burst is
due to the growth and the quasi-periodic breakdown of the
underneath recirculation that initiates the localized turbulent
patch.

In this letter, we first describe the numerical and experi-
mental setups. Then, the thresholds for localized turbulence are
provided for both experimental and numerical setups leading
to scaling laws with exponents of 2.3 to 2.8, respectively.
The spatio-temporal quasi-periodic dynamics is described and
explained through the observation of the quasi-periodic growth
and breakup of the recirculation region.

The Navier-Stokes equations together with the continu-
ity equation are solved using the spectral elements method
flow solver NEK5000, developed at Argonne National Labo-
ratory.16 For the problem in hand, the computational domain
consists of an inlet pipe with diameter, d, and a length 5d.
The outlet pipe has a diameter of D = 2d and the length
of 150d to contain three times the recirculation length at
Re = 2000. The results presented in this paper have been
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obtained with a mesh that has 62 300 spectral elements with
the polynomial order of 5. This gives the total number of
7.9 ⇥ 106 Gauss-Legendre-Lobatto points. At the inlet:
x = 5d, a vortex perturbation9 of radius r⌦ = d/4 is super-
imposed to the fully developed analytical laminar Hagen-
Poiseuille velocity profile

uinlet = 2
f
1 � 4 (r/d)2

g
ex + A⌦er , (1)

where A is the amplitude of the vortex perturbation and ⌦ is
the cross section velocity that is maximum at the center of the
vortex and null for r⌦ � d/4. The center of the vortex pertur-
bation is shifted in order to break the flow symmetry. As the
flow develops in the inlet section, the perturbation diffuses and
becomes smoother along the inlet. At the expansion section:
x = 0, the perturbations can be amplified depending on the val-
ues ofA and Re. The outflow and wall boundary conditions are
a Neumann boundary for the pressure outlet and zero-velocity
at the walls, respectively.

The experiment consists of a vertical pipe divided in an
inlet section with a diameter d = 1 cm and an outlet section
of diameter D = 2 d after the sudden expansion. The pipe
is made of 15 d long push-fitted tubes. The inlet section is
52.5 d long and the outlet section is 97.5 d long. The flow is
pressure driven by a 50-liter head tank with a water level main-
tained constant by a spillway and the constant supply of water
from a pump. Disturbances are damped by a honeycomb mesh
placed inside the tank, and the connection between the tank
and the pipe has a trumpet shape. The flow rate is controlled
by two fine adjustment valves whose apertures are tuned using
a graduated screw. The long-term temperature stability of the
laboratory was controlled to ±1 �C at a mean temperature of
20 �C. By these means, it was allowed to set the Reynolds
number up to 2000 ± 1%. To distinguish turbulent flow from
laminar, Kalliroscope flakes are added in the water and a ver-
tical sheet of light is arranged along the length of the pipe.
Without perturbations, the flow after the expansion remains
laminar for Re . 1050.

The inlet velocity profile strongly affects the flow down-
stream of the expansion.3 Hence the inlet velocity is mea-
sured using particle image velocimetry (PIV). Acquisitions
were performed with a camera (Hisense Neo). The sensor of
2560 ⇥ 2060 pixels combined with a zoom (Sigma) of focal
28-300 mm allows a resolution of 25 µm/pixel. The flow is
seeded with 9 ± 2 µm hollow-glass spheres with a density
of 1.1 g/ml and lightened by a laser (DualPower 135-15).
The vector fields are computed from Dantec Dynamics soft-
ware. Both inlet velocity profiles and the recirculation length
downstream of the expansion are measured as a function of
the Reynolds numbers (not shown). As Re increases, the recir-
culation axial length also increases. In a circular pipe, the
recirculation is axisymmetric and pointed in the downstream
direction. Numerical simulation with zero disturbances indi-
cate that the recirculation region will reach long lengths,7,17

following L/d = 0.0438Re, so the study of the flow requires
long pipes and long computation domains to accommodate the
oscillation of the recirculation region and the recovery of the
laminar flow at the outlet.

The flow after the axisymmetric sudden expansion
undergoes sub-critical transitions when disturbances are

introduced.7 To produce disturbances, a constant flow jet is
applied for 90 s through a hole of diameter 3 mm connected
to a syringe pump placed 5d before the expansion.

The scaling parameter is the velocity ratio, Vr = Uj/U,
between the mean velocity of injected fluid Uj and the bulk
velocity in the inlet pipe U. At a given Re, a minimal Vr
is required to generate turbulent patches. Below this critical
Vr value, disturbances will decay and the flow remains lami-
nar. This threshold is searched experimentally for several Re
numbers and plotted as a function of Re in Fig. 1(a). As Re
increases, the flow becomes more sensitive to the disturbance
and the critical Vr value decreases with a power law scale of
Vr /Re 2.3±0.3, determined by a least-square fit. For Re < 400,
disturbances decay as they get through the expansion thus the
flow remains laminar. This is the same as in the straight pipe
flow, where at low Re, a lower bound was found.18 The same
test was done numerically to find the threshold amplitude A
for vortex perturbations as a function of Re, also shown in
Fig. 1(b). The least-square fit of the numerical data indicates:
A / Re�2.8, which agrees with the experimental data but for
1000 . Re . 2000.

Both experimental and numerical studies give similar
scaling which is different from Sanmiguel-Rojas and Mullin8

who founded a scaling Re 0.006. The different scaling can
be explained because the tilt perturbation applied at the
inlet pipe wall by the authors is unphysical and differ-
ent from the disturbance used here. In the present study,
the perturbation is set at 5d from the expansion, which
means the perturbation has started to be damped by the
flow when it reached the expansion.9 Thus the flow’s sen-
sitiveness to perturbation as a function of Re is lower in
the present cases than in the one from Sanmiguel-Rojas
and Mullin.8 A similar observation is made in stenotic
flow19 where the contraction of the flow tends to damp
perturbations.

The minimal energy growth required to trigger localized
turbulence was formulated in various ways.20 Cantwell et al.7

have shown that the expansion pipe flow is a noise amplifier;
thus, a disturbance might grow when it gets through the expan-
sion. Several theoretical,21 numerical,22 and experimental23,24

studies found that the minimum threshold energy/amplitude
to trigger disturbances scales with the Reynolds number as a
power-law with an exponent from 3 down to 1. These results
border the scaling obtained in the present study although the

FIG. 1. (a) Experimental critical Vr versus Re for a crossflow jet. The contin-
uous line is a power law fit: Re 2.3±0.03. (b) The numerical critical amplitude
of the vortex perturbation A versus Re. (The inset is the same results in the
log-log scale.)
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FIG. 2. Space-time diagram of the oscillating turbulent patch at (a) Re = 700
and Vr = 0.35 from experiments. The white region was not captured by the
camera. (b) Re = 1300 and A = 0.5 from numerical simulations, with u0x/U
being the normalized velocity fluctuation.

expansion base flow differs from the regular Poiseuille profile
because of the recirculation.

The novelty of this study is the observation of quasi-
periodic bursts in the transitional regime both in experiments
and simulations as suggested by previous studies.3,9 When
Vr is above the critical value and a turbulent patch is formed
at a fixed axial position, it is sustained as long as the injec-
tion. But when Vr is around the critical value, the flow has a
different behavior. Turbulent patches are formed periodically
around 20d downstream of the expansion. A space-time dia-
gram, obtain from Kalliroscope visualizations, is presented in
Fig. 2(a) for Re = 700 and Vr = 0.35 close to the critical Vr for
transition. The laminar flow appears in light grey, whereas the
turbulent patches are in dark. It shows that the turbulent patches
are not self-sustained, they decay as new ones are formed, and
they are not localized in space since they are moving down-
stream. The space-time diagram shows oscillations with a time
period of 6.9 s, corresponding to a non-dimensional time tU/d
= 49.8. With increasing Vr , the turbulence becomes sustained
by the injected fluid and the oscillation pattern disappears.

In Fig. 2(b), numerical results are presented, specifically
the streamwise velocity fluctuation u0x = ux � ub, where ux

is the instantaneous axial velocity and ub is the base flow veloc-
ity. Zero velocity fluctuation indicates that the velocity is at
the same speed as the base flow, whereas the negative veloc-
ities indicate that the turbulent patch has a velocity reduced
when compared to the base flow. Thus, an oscillatory motion
is observed on the space-time diagram with a time period of
8.5 s and a non-dimensional time tU/d = 110, of the same
order as the experiments although Re are different. Turbulent
patches develop around 20d and decay as the negative veloc-
ity amplitude decreases. Again, this behavior only occurs for
a vortex perturbation with an intensity near the critical value
as in the experimental case.

Snapshots of the numerical axial velocities and the
Kalliroscope visualizations at different stages of the bursting
cycle are presented in Fig. 3. Whereas most of the previous
studies reported unsteady flow,25,26 here we provide evidence
for quasi-periodic turbulent bursting. On the numerical data,
the effect of the finite-amplitude vortex perturbation is to
deflect the long recirculation region towards the opposite side
of the disturbance as depicted on the top side of Figs. 3(a)
and 3(b). Then, a secondary recirculation region appears along
the wall and growths as indicted by the dimple in Figs. 3(c)
and 3(d). On the experimental visualization images in
Figs. 3(e)–3(i), the turbulent patch development through time
appears as a wavy process with an asymmetric wave with
two arms reminiscent of the symmetries of the instability
modes suggested by Cantwell et al.7 The visualization used
here does not allow to detect the secondary recirculation
region, but it is possible to detect the turbulence patch for-
mation that takes place from the shear region. Its extent is
8 ± 1d. Note that the axial position of the secondary recir-
culation region in the numerical results and the growth of
the turbulent patch from the flow visualization both appear at
x/d ⇡ 30.

In order to compare sub-critical and natural transition,
space-time diagrams of the axial centerline velocity are pre-
sented in Fig. 4. Two examples for natural transition are repro-
duced, one near the critical Re and another at higher Re. When
the flow is laminar, the velocity decreases gradually, whereas

FIG. 3. [(a)-(d)] Axial velocity snapshots sequence, showing the asymmetry growth, the burst, and the translation downstream for Re = 1300 and A = 0.5 at
(a) t = 8 s, (b) 9.23 s, (c) 10 s, and (d) 10.8 s. (e) Flow visualization of the turbulent patch in the pipe at Re = 730 and Vr = 0.3 at t = 24.1 s from the onset of
the disturbance. [(f)-(i)] Zooms on the formation in space and time of one turbulent patch for Re = 730 and Vr = 0.3 at (f) t = 20 s, (g) 20.8 s, (c) 22.9 s, and
(d) 24.1 s (see the supplementary material for 2 videos showing the periodic bursts observed in the simulation and the experiments).

ftp://ftp.aip.org/epaps/phys_fluids/E-PHFLE6-30-057803
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FIG. 4. Space-time diagrams of the axial velocity, ux /U, measured using PIV.
The velocity is made non-dimensional using the bulk velocity U in the inlet
pipe. (a) Re = 1100 and (b) Re = 2050. The vertical line at x/d = 0 is an
artifact from optical reflections. The lines at x/d = 7.5 and 30 are due to
the pipe junction between the two sections, and the black vertical lines at
x/d ⇡ 17 correspond to the border between the two images from the two
cameras.

in the turbulent patch, the axial velocity is low and changes
quickly.

In Fig. 4(a), Re = 1100, the flow exhibits an oscilla-
tion pattern as turbulent patches form downstream, propagate
upstream, and decay. Although at Re = 1100 the flow also
presents an oscillation between the laminar and turbulent state,
the behavior of the flow is different from the sub-critical cases
shown in Fig. 2. When applied, the perturbation causes the
breaking of the flow and the patch extends downstream. At
higher Re, i.e., Re = 2050, as depicted in Fig. 4(b), the flow
becomes turbulent at x/d ⇡ 10 and no position oscillation is
observed so that the turbulent patch is sustained and located
as previously found in numerical simulation9 or in the conical
expansion.

Disturbed flow with long and thin recirculation region near
the wall will prevent wall turbulence and lead to flow separa-
tion.27 Indeed, downstream of the expansion, the base flow is
made of a long thin recirculation region which can be made
non-axisymmetric by the addition of a disturbance of suffi-
ciently high amplitude. This leads to wavy coherent structures
along the axis of the pipe. These observations suggest self-
sustained motion28 in the bulk due to vortex-wave interaction.
This mechanism maintains disordered flow as long as the dis-
turbance is applied even at low Re. Once the disturbance is
removed, the decay is linear in time,17 contrary to the uniform
pipe flow close to the transition. Note that it is yet to clarify
whether the eddies in the visualization may be associated with
turbulence cascade and what scaling they obey.

The stability of pipe Poiseuille flow has been tested using
several finite-amplitude disturbances. The critical amplitude
required to cause transition scales as Re 2.3±0.03 for a single
crossflow jet. These results are consistent with numerical simu-
lations that found Re 2.8 for a vortex type perturbation. Overall,
this scaling is much steeper than the scaling for the constant
diameter pipe flow or plane Poiseuille flow.

Our main finding is the observation of a turbulent burst-
ing behavior caused by the formation, growth, and breakup
of a recirculation underneath the long axisymmetric recircula-
tion due to the expansion. Using a combination of experiments
and numerical simulations, we observed the formation of wavy

structures that form localized turbulence. It seems a robust
mechanism as it is observed clearly in experiments and numer-
ical simulations. Yet, the range of Reynolds numbers differs
and this may be due to imperfections, lack of resolution, and
the choice of the disturbance that does not exactly reproduce
the experiment. In the future, direct numerical simulations of
the jet disturbance will be implemented in order to be faithful
to the experiment.

See supplementary material for movies of the numer-
ical simulation and the flow visualization of the bursting
phenomena corresponding to Fig. 3.
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