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Effect of the number of vortices on the torque
scaling in Taylor–Couette flow
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Torque measurements in Taylor–Couette flow, with large radius ratio and large aspect
ratio, over a range of velocities up to a Reynolds number of 24 000 are presented.
Following a specific procedure, nine states with distinct numbers of vortices along the
axis were found and the aspect ratios of the vortices were measured. The relationship
between the speed and the torque for a given number of vortices is reported. In the
turbulent Taylor vortex flow regime, at relatively high Reynolds number, a change
in behaviour is observed corresponding to intersections of the torque–speed curves
for different states. Before each intersection, the torque for a state with a larger
number of vortices is higher. After each intersection, the torque for a state with a
larger number of vortices is lower. The exponent, from the scaling laws of the torque,
always depends on the aspect ratio of the vortices. When the Reynolds number is
rescaled using the mean aspect ratio of the vortices, only a partial collapse of the
exponent data is found.
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1. Introduction
Since the work by Mallock (1888), Couette (1890), Wendt (1933) and Taylor (1936),

there has been theoretical and experimental interest in the torque from liquids confined
between two concentric differentially rotating cylinders.

Following the work by Taylor (1923), important contributions to the understanding
of this flow instability have been made by many authors, including Stuart (1958),
Donnelly & Simon (1960), Coles (1965), Snyder (1969), Gollub & Swinney (1975),
Barcilon et al. (1979), Koschmieder (1979), Mullin & Benjamin (1980), Di Prima
& Swinney (1981), Benjamin & Mullin (1982), Nakabayashi, Yamada & Kishimoto
(1982), Riecke & Paap (1986), Cliffe, Kobine & Mullin (1992), Lathrop, Fineberg
& Swinney (1992), Lewis & Swinney (1999), Takeda (1999), Xiao, Lim & Chew
(2002), Czarny et al. (2003), Lim & Tan (2004), Abshagen et al. (2005), Racina
& Kind (2006), Dutcher & Muller (2009), Burin, Schartman & Ji (2010) and many
others. Because of these successes, the Taylor–Couette system is used to investigate
the turbulence scaling laws, in particular the behaviour of the dimensionless torque
acting on the rotating cylinder as a function of the Reynolds number.
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From a practical point of view, Wendt (1933) and Donnelly & Simon (1960)
provided scaling laws for the dimensionless torque, G, as a function of the Reynolds
number, Re, i.e. G ∝ Reα, with an exponent, α, that depends on Re and other
parameters. More recent studies (Lathrop et al. 1992; Lewis & Swinney 1999;
Dubrulle et al. 2005; Ravelet, Delfos & Westerweel 2010; van Gils et al. 2011;
Paoletti & Lathrop 2011) provided additional data on torque and were concerned
with fairly large Reynolds numbers.

Eckhardt, Grossmann & Lohse (2007) proposed analogies between turbulence
in Rayleigh–Bénard convection and in Taylor–Couette flow with emphasis on the
evolution of the exponent. An argument was put forward to investigate turbulent
Taylor–Couette flow because it has a stronger driving than Rayleigh–Bénard flow
and should allow access to the ultimate turbulent regime (Huisman et al. 2012;
Ostilla-Mónico et al. 2014). This unifying theory was tested using the data of
Lathrop et al. (1992) and Lewis & Swinney (1999). They found good agreement for
a range of Reynolds numbers above 104.

From a numerical point of view, several groups (Coughlin & Marcus 1996; Batten,
Bressloff & Turnock 2002; Bilson & Bremhorst 2007; Pirró & Quadrio 2008;
Brauckmann & Eckhardt 2013; Ostilla et al. 2013; Ostilla-Mónico et al. 2014) were
able to simulate turbulent Taylor–Couette flow up to relatively high Re. Most of these
investigations (Brauckmann & Eckhardt 2013; Ostilla et al. 2013; Ostilla-Mónico et al.
2014) used periodic boundary conditions with relatively short calculation domains.
Ostilla et al. (2013) presented the effect of three- and four-vortex pairs on the
dimensionless momentum transport, suggesting that the larger number of vortex pairs
induces an increase in torque. Brauckmann & Eckhardt (2013) investigated the effect
of the vortex size on the torque and found a maximum of torque for vortices of axial
wavelength of 1.93 times the gap width for Re = 5000. Hence, the Taylor–Couette
system offers an opportunity to vary the number of vortices for a fixed value of the
aspect ratio and therefore to modify the vortex shape and the shear between two
adjacent vortices. However, none of the recent studies have explicitly mentioned the
number of cells, although both Lathrop et al. (1992) and Lewis & Swinney (1999)
provided torque data for eight- and 10-vortex states.

In this article, we elucidate the effect of the number of vortices on the torque–
speed relationship in a system containing up to nine states. This article is organised
as follows. A description of the experimental apparatus is given in § 2 together with
a detailed discussion of the protocols to obtain the different numbers of vortices. This
is followed, in § 3, by the results for the torque data which are analysed. Finally, we
draw some conclusions in § 4.

2. Experimental set-up and procedure
2.1. Experimental set-up

The Taylor–Couette geometry used here is fitted on a rheometer (Physica MCR 501,
Anton Paar). Figure 1 shows a sketch of the experiment. The inner cylinder has a
radius of ri= 50± 0.01 mm and the outer cylinder has a radius of ro= 55± 0.01 mm.
Hence, the gap between the two cylinders is d= ro− ri= 5± 0.01 mm. The length of
the inner cylinder is L= 150± 0.5 mm. Consequently, the dimensionless parameters
that describe the geometry are the radius ratio η= ri/ro = 0.909 and the aspect ratio
Γ = L/d= 30. The object of the present experiments was to examine the relationship
between the angular speed of the inner cylinder, Ω , and the torque that it exerts
on the fluid, T . The Reynolds number, Re, is based on the angular velocity of the
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FIGURE 1. Sketch of the Taylor–Couette system, drawn to scale.

inner cylinder, the radius of the inner cylinder, the gap between the cylinders and the
properties of the fluid, Re=Ωrid/ν, where ν is the kinematic viscosity of the working
fluid. The dimensionless torque, G, is based on the torque exerted by the fluid in the
walls of the inner cylinder, the height of the inner cylinder and the properties of the
fluid. Here, G is defined as G = T/2πρν2L, where ρ is the density of the working
fluid. In addition to G, the so-called ω-Nusselt number, Nuω, defined according to
Eckhardt et al. (2007), is also used,

Nuω = G
Glam

, where Glam = 2η
(1+ η) (1− η)2 Re. (2.1)

Here, Nuω represents the torque measured in units of laminar torque.
The inner cylinder is made of aluminium and its surface is anodised. The bottom

of the inner cylinder is recessed. There is a gap of 0.5 ± 0.001 mm between the
edge of the base of the inner cylinder and the flat bottom of the outer cylinder filled
with an air bubble, which minimises the shear stress on the bottom of the cylinder.
The top part of the gap between the two cylinders is covered with an annular PVC
lid. It is positioned so that the bottom of the lid is at the same height as the upper
edge of the inner cylinder. This means that the gap is completely filled and there
is no contact between the lid and the inner cylinder. The outer cylinder is made of
glass and there is an additional glass jacket connected to a flow of water in order
to maintain the working temperature at 22± 0.01 ◦C. For flow visualisation purposes,
2 % of Kalliroscope is added to the fluid. The rheometer allows for torque- or
speed-controlled runs. The highest acquisition frequency is 100 Hz and the real
resolution of the encoder is smaller than 1 µrad. The accuracy of the torque is
0.5 % of the measured value and is never smaller than 0.2 µN m. Several fluids,
mixtures of water and glycerol, were used in order to optimise the speed acquisition.
Additional measurements were made using a low-viscosity silicone oil in order to
obtain data in the highest range of Re.
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2.2. Experimental procedure
In quasi-static ramping of the velocity, the Taylor vortex flow is characterised by 30
time-independent axisymmetric toroidal vortices from Rec = 138. This value is close
to the predicted value (139) given by the stability theory (Esser & Grossmann 1996).
For 157<Re< 199, wavy vortex flow is seen. Then, from Re= 199, modulated wavy
vortex flow is observed.

In figure 2, a spatio-temporal diagram over the whole height of the cylinders is
presented. The flow is driven by the rotation of the inner cylinder at a constant
ramping rate, ∂Re/∂τ = 4, where τ = tν/d2 and t is time. As Re increases from
laminar Couette flow, Eckman vortices develop at the ends of the cylinders (Czarny
et al. 2003). Then, these vortices evolve into a well-defined state of axisymmetric
steady toroidal Taylor vortices that rapidly join at the centre of the cylinder at
Re = 143. At Re = 174, wavy vortex flow starts. In figure 2, the second interval
(250 < Re < 450) shows sequences of regions of strong modulation leading to the
merging of cells (26, 24 and 22). In this same range of Re, Coles (1965) showed in a
system of similar aspect ratio that a large number of expected states were accessible
due to the vertical oscillations and the merging of these cells. Clearly, as we progress
in time or in Re the number of cells decreases from 30 to 20. To obtain a smaller
number of cells, say 18, a lower acceleration is used. Hence, this merging of cells
will allow us to prepare an initial state with 30 to 18 cells. Only the number of cells
is taken into account and spiral modes are not considered here. Once the desired
number of cells is set up, our strategy is to instantaneously change the torque to a
prescribed value and then measure the velocity for a few minutes before the next
measurement. The stability of each state was tested for approximately 70 times the
viscous time, i.e. ν/d2, to ensure that the number of vortices remained constant. The
velocity fluctuations of the rotating cylinder are small, typically around 0.6 %.

3. Results and discussion
The results are a combination of torque measurements and simultaneous flow

visualisations. The first set of results is concerned with the properties of two distinct
states, 30- and 18-cell states. The second set of results presents and analyses the
torque data, and describes the stability limit of the states as well as the change in
behaviour in the torque–speed curves for different states.

3.1. Aspect ratio of cells
The finding of different states for the same boundary conditions requires that the size
of the cells varies from one state to another. In figure 3(a,b), photographs of two states
with 30 and 18 cells at Re = 6000 are presented. Figure 3(c) presents their aspect
ratio along the vertical axis. For intermediate numbers of cells, 20, 22, 24, 26 and 28,
intermediate curves are expected. For the primary state of 30 cells, the aspect ratio,
l/d, of all the cells is close to one. However, for the 18-cell pattern, the ratio l/d is
1.5 in the centre of the cylinder, so the cells are elongated. It should be noted that
the cells close to the ends of the cylinders have a significantly larger aspect ratio up
to 2.5. This indicates that the caps have a local effect and strongly elongate the two
cells close to the ends (Czarny et al. 2003). Although the data on the aspect ratio
are for Re = 6000, using the same protocol we have observed states with different
numbers of vortices over a wide range of Re that look essentially similar to the ones
in figure 3(a,b).
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FIGURE 2. Spatio-temporal diagram over the whole height (Γ = L/d= 30) of the Taylor–
Couette flow (η= 0.909) in three intervals from Re= 110 to 1300. The acceleration rate
is ∂Re/∂τ = 4. The numbers on the diagram count the number of cells from bottom to
top.
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FIGURE 3. (Colour online) Photographs and aspect ratios along the axis of 30 and 18
cellular modes at Re = 6000. (a) Normal 30 cells, (b) abnormal 18 cells and (c) the
associated aspect ratio along the axis.

The states in figure 3 were obtained at Re= 6000. The difference in the measured
torque between the 18-cell state and the 30-cell state is 13.5 %. The state with the
larger number of cells experiences a larger torque. This is in agreement with the
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FIGURE 4. (Colour online) Rescaled torque, Nuω, as a function of Re for the different
flow states. The black stars (F), blue triangles (N) and red triangles (H) represent the
Couette flow, the Taylor vortex flow and the wavy vortex flow, respectively. The thick
(cyan) line represents a fitting using the proposed scaling of Donnelly & Simon (1960).
The top inset is a zoom at small Re in linear scale showing the stability limits of some
states. The bottom inset is a zoom at large Re in linear scale showing the intersections.
The black triangles (N) and the empty triangles (O) represent data obtained using low-
viscosity silicone oil. The error bars are smaller than the plotting symbols.

numerical simulation of Ostilla et al. (2013), although their range of Re (400< Re<
1600) and the number of cells tested (six or eight cells) is smaller.

3.2. Torque
Torque and speed measurements have been performed up to an Re of 24 000. Using
the procedure presented earlier we were able to measure the torque associated with
seven different states: 30, 28, 26, 24, 22, 20 and 18 cells. The relationship between
the ω-Nusselt number and the Reynolds number for these states is presented in
figure 4. Different symbols and colours represent the different states: the laminar
Couette flow, the Taylor vortex flow (30 cells), the wavy vortex flow and the seven
different turbulent Taylor vortex flows with 30, 28, 26, 24, 22, 20 and 18 cells. In
order to access large values of Re up to 24 000, low-viscosity silicone oil was used
and two series of data are reported in figure 4. The use of silicone oil does not allow
one to visualise the flow and therefore to count the number of vortices. These data
were obtained by applying protocols leading to states with large and small numbers
of cells. The trend of the curves suggests that the black triangles correspond to large
numbers of cells and empty triangles to small numbers of cells.
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In figure 4, the ω-Nusselt number associated with Couette flow (Re<Rec) is almost
constant and just above one; the small difference from one is due to end effects. The
Taylor vortex flow and the wavy vortex flow have distinct properties, corresponding to
different slopes in the Nuω versus Re curve. The rescaled torque behaviour for Taylor
vortex flow (138<Re< 154) is fitted by a relation suggested from the finite amplitude
theory by Stuart (1958) and proposed by Donnelly & Simon (1960),

Nuω = aRe−2 + bRe0.36, (3.1)

with a=−13 374 and b= 0.33.
The stability domains of the different numbers of vortices are shown in the top inset

of figure 4. It is interesting to notice that the 30-, 28- and 26-vortex states are not
stable for Re below 3800. Similarly, the 24-, 22- and 20-cell states are not stable for
Re below 2300, 2100 and 1700, respectively. In the range between 1000 and 1700,
only the 18-cell state is stable. These results are reminiscent of the stability studies
of Coles (1965), Snyder (1969), Koschmieder (1979) and Cliffe et al. (1992).

As the Reynolds number increases, a systematic increase of the ω-Nusselt number
is observed. The 18-cell state always has the lowest ω-Nusselt number, whereas the
states associated with the largest number of cells always have the highest ω-Nusselt
number. As the Reynolds number increases further, the curves of Nuω versus Re move
closer together. Then, the curves for different states intersect in a range of Re between
9600 and 15 500. A zoom in this range is shown in the bottom inset of figure 4,
where most of the intersections are located at approximately 12 600. Below each
intersection, the torque is larger for states where the number of cells is larger. Above
each intersection, the trend changes and a smaller number of cells leads to a larger
torque. Similar intersections were reported by Lathrop et al. (1992) and Lewis &
Swinney (1999) for eight- and 10-cell states in a system with a radius ratio of 0.724.

The analysis of our data allows us to present, in figure 5, the rescaled torque as a
function of the aspect ratio of the vortices, l̄/d, for several values of Re. For relatively
small Re, the rescaled torque decreases as the aspect ratio of the vortices increases.
For large Re, the rescaled torque increases with l̄/d. At Re= 13 000, Nuω is almost
constant. In the experiments, values of l̄/d between 0.88 and 1.5 correspond to states
with 34–18 cells. Our results confirm a clear effect of the vortex aspect ratio on Nuω,
which was predicted by numerical simulations (Brauckmann & Eckhardt 2013; Ostilla
et al. 2013). For Re= 5000, our values of Nuω are slightly lower than the numerical
results of Brauckmann & Eckhardt (2013) and do not exhibit the peak that these
authors found in their data at l̄/d = 0.965. The discrepancy between the experiments
and the numerical simulations may be due to the fact that the numerical simulations
were performed for a radius ratio of 0.71.

3.3. Exponent
The dependence of Nuω on Re can be described by

Nuω =AReα−1, (3.2)

where A depends on the vortex aspect ratio and is a decreasing function of Re. A
motivation behind seeking scaling laws is that insight into the turbulence mechanisms
can be uncovered (see Dubrulle et al. 2005; Eckhardt et al. 2007). It is clear that
the scaling laws discussed above cannot hold for Taylor vortex flow and wavy vortex
flow since the flow is non-turbulent. Donnelly & Simon (1960) discussed this issue
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FIGURE 5. The rescaled torque in dependence on the aspect ratio of the cells for different
values of Re. The horizontal error bar for Re= 10 000 represents the maximum error on l̄.
The vertical error on Nuω is smaller than the symbol height.

and proposed the scaling (3.1) for Taylor vortex flow. For the range of Re below 3000,
the exponent found in the present study is almost constant (α' 1.5) and agrees well
with the data from Lim & Tan (2004) and Ravelet et al. (2010).

Figure 6(a) displays the variation of α − 1 as a function of Re for different
numbers of cells for 4000 . Re . 21 000. Here, α − 1 = ∂(log10 Nuω)/∂(log10 Re) is
calculated for each state separately as a function of the Re using a sliding least-square
fit (Lathrop et al. 1992; Lewis & Swinney 1999; Ravelet et al. 2010; Merbold,
Brauckmann & Egbers 2013) over the interval ∆(log10 Re) = ∆10 = 0.1. For the
18-cell state the interval is 0.2. The results are compared with those of Ravelet et al.
(2010) whose experiment has η = 0.917 and Γ = 22. Although their aspect ratio
is smaller then ours, there is good agreement between their results and the present
exponents for the 20- and 22-cell states. Both studies exhibit monotonic increase for
3000 . Re . 15 000.

A new scaling of the Reynolds number based on the mean aspect ratio of the cells,
l̄Re/d, is proposed for the exponent in figure 6(b). Only a partial collapse of the data
is found. This suggests that the size of the cells is an important parameter in the
turbulent regime studied here. It should be noted that at higher l̄Re/d, the collapse is
better.

The meaning of α is related to the viscosity dependence of the torque (Lathrop et al.
1992). The Kolmogorov assumption assumes α = 2 for fully developed turbulence
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(Doering & Constantin 1992). Any deviation from α = 2 implies a particular form
of velocity fluctuations. In a flow system with a given number of vortices, the form
of the velocity fluctuations is constrained by the presence of large-scale vortices and
cannot be completely random. Modern investigations using particle image velocimetry
(see Racina & Kind 2006; Tokgoz et al. 2012) aim to quantify the velocity fluctuations
and estimate the average turbulent kinetic energy dissipation rate.

The principal feature that we wish to highlight is the systematic dependence of the
scaling on the aspect ratio of the cells, displayed in figure 6. For situations where the
number of cells is small, typically 18 here, the flow is less constrained by the cells.
Therefore, the turbulent flow will exhibit larger velocity fluctuations, leading to higher
turbulence and a larger α. For situations were the number of cells is large, typically
30, the flow is more constrained by the cells and the velocity fluctuations are weaker,
leading to a smaller α.

4. Conclusions
The effect of the number of vortices on the torque in a Taylor–Couette flow (η =

0.909 and Γ = 30) up to Re = 24 000 has been quantified. A specific protocol was
used to obtain different states with 34, 32, 30, 28, 26, 24, 22, 20 and 18 cells. The
evolution of the rescaled torque, Nuω, versus Re for different numbers of cells was
obtained. The results are in agreement with those of Lim & Tan (2004) and Ravelet
et al. (2010) and, moreover, the curves superpose self-consistently.

The effect of the vortex size on the rescaled torque indicates a change in behaviour
corresponding to an intersection in the Nuω versus Re curves at Re between 9600
and 15 500. For most of the states, the intersection is at approximately 12 600. Before
each intersection, the torque is larger for a large number of cells and smaller after the
intersection. In the same range of Re, but for a system with a radius ratio of 0.725,
Lathrop et al. (1992) found a transition from centrifugal instability to shear turbulence
using torque and local wall shear stress data. Lewis & Swinney (1999) confirmed
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this transition by means of additional data on torque and wall shear stress, as well
as velocity measurements. The data from Lewis & Swinney (1999) show a similar
intersection for eight- and 10-cell states. In our case, it is not possible to conclude
that the intersection is an indicator of a transition to shear-driven turbulence.

The scaling exponent of the torque is larger for states with large aspect ratios. It
is also found that the exponents collapse when scaled with a Reynolds number based
on the aspect ratio of the vortices. Finally, new large experimental apparatuses have
been built (van Gils et al. 2011; Avila & Hof 2013; Merbold et al. 2013), and these
effects will be further detailed in ranges of higher Re if future investigations attempt
to count the number of vortices.
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