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Transition to Turbulence in Pipe Flow
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We review the results of recent experimental investigations into transition to
turbulence in fluid flow through a circular straight pipe, at room temperature.
The stability of Hagen–Poiseuille flow was investigated using impulsive per-
turbations by either injecting or sucking small amounts of fluid through holes
in the wall of the pipe. The evolution of the induced patches of disturbed
flow were observed using flow visualization and laser Doppler velocimetry.
The principle result obtained was a finite amplitude stability curve where the
critical amplitude of the disturbance required to cause transition is found to
be inversely proportional to the Reynolds number. Estimates for the lower
threshold value of Reynolds number which is required to sustain turbulence
were also measured.

1. INTRODUCTION

The onset of turbulence in the flow through a long circular straight
pipe has intrigued scientists since Reynolds’ experimental investigations1 at
the end of the 19th century. The problem is simple in concept and yet the
origins of the observed turbulent motion remain largely mysterious despite
more than a century of research. The principle issue is that all theoreti-
cal and numerical work suggests that the flow is linearly stable,2,3 i.e. it
remains laminar for all Re and yet most practical pipe flows are turbu-
lent. Hence, there is a direct conflict between theory and observation (here
Re=UD/ν, where U is the mean velocity, D the pipe diameter and ν is the
kinematic viscosity of the fluid).

Reynolds found the onset of what he called “sinuous” flow depends
on the nondimensionalized flow rate and this parameter is now called the
Reynolds number. He observed that in uncontrolled experiments turbu-
lence appeared naturally at Re ≈ 2000 and was triggered by inlet distur-
bances to the pipe. However, Reynolds also noted that the laminar state
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could be maintained to Re ≈ 13,000 if he took great care in minimizing
external disturbances to the flow. A clear example of the effects of control-
ling background effects is provided by Pfenniger4 who managed to obtain
laminar flows up to Re ≈ 100,000 by taking extraordinary care. Studies
of transition to turbulence in pipe flows using cryogenic fluids are rare
although the results of an extensive experimental investigation of turbulent
pipe flow using liquid helium has been reported.5 Some results are also
reported for transition to turbulence and they are consistent with those
obtained using conventional fluids.

All experimental evidence suggests that transition to turbulence in
pipe flow is finite amplitude in nature. Experimental results have been
reported for a finite amplitude threshold curve6 where transition to turbu-
lence was found above a critical amplitude of perturbation and the ampli-
tude exhibited systematic dependence on Re. The threshold is found to
be probabilistic in nature with a narrow normal distribution where the
mean is used to identify transition and the width provides an estimate of
the errors. Darbyshire and Mullin’s perturbation system6 involved injecting
and subtracting a short pulse of fluid tangentially through a small number
of holes equally spaced around the circumference of the pipe. A range of
perturbations have been employed by other investigators including using
a larger number of holes,7,8 continuous flow injected through a porous
wall9 and periodic suction and injection.10,11 The general consensus is that
there is some sensitivity of Hagen–Poiseuille flow to the form and type
of imposed perturbation but the specific part of the perturbation which
is responsible for transition is yet to be identified. The qualitative fea-
tures reported in the Darbyshire and Mullin investigation6 have also been
observed in studies of the stability of a rotating sample of 3He–B.12,13 The
transition to turbulence is subcritical so that a finite amplitude threshold
for injected perturbations must be crossed before turbulence arises. As in
pipe flow, the transition is probabilistic with a normal distribution of per-
turbation amplitudes close to the threshold boundary. A qualitative differ-
ence with transition in pipes is that the two final states of the flow are
either vortex-free superflow or turbulence with discrete vortices, whereas
they are either Poiseuille flow or sustained turbulence in pipes.

In a more recent investigation of pipe flow transition,14 a novel type
of perturbation was used to reveal a scaling relationship for the amplitude
of perturbation required to cause transition to turbulence as a function of
Re. The novel feature was that it allowed for a separation of amplitude
and timescales of the perturbation by injecting a boxcar distribution of
perturbed fluid into the main flow field. It was firmly established that the
important criterion was the length of the flow field which was perturbed
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and this enabled the uncovering of a O
(
Re−1

)
scaling law for the ampli-

tude of perturbation required to cause transition over the range 2000 <

Re<20,000. This is found to be true provided the initial perturbation dis-
turbed more than 10 pipe diameters of the flow. Some evidence for such
scaling laws has been reported previously for pipe flows,9 boundary lay-
ers,15 and they have also been found for plane Couette flows.16 One sur-
prising consequence of the scaling law for pipe flows is that the absolute
amplitude of the perturbation remains relatively large with increasing Re.
Therefore, theories based on local analyses of the trivial state may not
provide much insight into transition since the basin of attraction of the
laminar state remains finite even at modest Re. This appears to contra-
dict many observations which show that very small amplitude disturbances
are required to promote turbulence at high Re. However, it was shown by
Reynolds and many others subsequently that the inlet flow is very sensitive
to perturbations so that fully developed Poiseuille flow is evidently more
robust. Moreover developing flow is known to be linearly unstable17 albeit
at values of Re≈10,000.

Clearly the Re−1 scaling law cannot hold for small Reynolds num-
bers where all previous results indicate that the flow is globally stable.
This apparent contradiction was resolved recently18 where it was shown
that when Re ≤ 1760, impulsive small amplitude perturbations introduced
into fully developed Hagen–Poiseuille flow decayed as they traveled down-
stream, i.e. when Re ≤ 1760 all perturbations decay and turbulent flow
cannot be maintained. On the other hand, for Re ≥ 1760, perturbations
of sufficient amplitude give rise to transition to the nontrivial state of
turbulence. At these values of Re the turbulence is localized and has the
form of an “equilibrium turbulent puff.”19 A sequence of flow visualiza-
tion photographs of a typical puff at Re = 2300 is shown in Fig. 1. Puffs
are ∼20 diameters long and travel at ∼ 0.9 U and hence the mean flow
passes through the sharp rear interface of the puff. They maintain their
form as they travel along the pipe with rear half of highly disordered flow
with a weak decaying wave at the front. When Re ≥ 3000 the localized
region of fluid formed on transition contains fully disordered motion and
both front and rear interfaces are sharp. The leading edge travels faster
than the mean flow and the rear slower and hence the patch of disor-
dered motion spreads as it travels. These blocks of disordered motion are
now referred to as slugs.19 The motion inside the patch is not fully turbu-
lent and flows with the statistical properties of fully developed turbulence
are not found until Re ≥ 5000. Transition at even greater values of Re is
abrupt and rapidly fills the pipe. Modern numerical computations of some
specific perturbations applied to Hagen–Poiseuille flow have also produced
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Fig. 1. Flow visualization of an equilibrium puff at Re=2300. The mean flow U is 11.5 cm/
second. Each photograph is taken at a fix location at 1 second time intervals. Flow is from
left to right and the first photograph in the sequence is at the bottom and the last at the top.
The weak wave at the front of the puff can just be discerned in the middle of the bottom
photograph and the sharp rear interface in the middle of the top picture.

puffs20,21 and computational approaches can now reproduce the structures
seen in experiments.

Here, we review results of recent investigations into transition to tur-
bulence in pipe flows. We begin by highlighting the sequence of events
close to the threshold boundary where the rapid nonlinear development
of sustained turbulence is identified in a new flow visualization investiga-
tion. In the second investigation, the lifetimes of the puff states found at
low Re are studied in terms of the statistics of the evolution of controlled
perturbations. This has enabled us to uncover a sharp lower bound for the
existence of sustained turbulence and complements the existing scaling law
for the threshold amplitude law. It thus enables a more complete descrip-
tion of the boundary between laminar and turbulent flows in amplitude
versus Re space.

2. EXPERIMENTAL DETAILS

A schematic diagram of the apparatus is presented in Fig. 2. The
pipe had a diameter D = 20 ± 0.01 mm and was constructed from 100,
150 mm long machined sections push-fitted together and butted flush so
that there was no measurable gap between each section. This method of
construction was used to ensure a long straight pipe which was circular
to the machining accuracy of ±0.02 mm. The pipe was held on a steel
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Fig. 2. (Color on-line) Schematic of the constant mass flux pipe facility. The pipe, the res-
ervoir, and the piston are up to scale. The temperature of the laboratory was controlled to
±1◦C at a mean temperature of 20◦C.

base and had a total length of 15 m (750D) and was aligned using a laser.
A reservoir with a capacity of 100 l was connected to the pipe through a
smooth trumpet shaped inlet. A 30 cm diameter stainless steel piston was
mounted on hardened fibre piston rings inside a ground steel cylinder and
this pulled the fluid at a constant mass flux along the pipe using a com-
puter controlled motor and lead screw arrangement. Hence, even if the
motion became turbulent, the mass flux through the pipe was unaffected
so that the Re remained constant. The long-term temperature stability of
the laboratory was controlled to ±1◦C at a mean temperature of 20◦C.
A typical temperature gradient recorded from several thermocouple along
the pipe was 0.2◦C. By these means, we were able to maintain an accu-
racy in Re of better than 1%. The facility enabled a laminar flow to be
achieved up to a flow rate corresponding to Re = 23,000. Laminar pipe
flow could only be obtained at such high Re by allowing settling times of
∼1 hour to ensure that disturbances in the header tank had decayed. This
emphasizes the point that pipe flow is very sensitive to inlet disturbances
but, once Poiseuille flow has developed, a finite amplitude perturbation is
required to cause transition in practice. The experimental work here was
performed by perturbing fully developed Poiseuille flow which is achieved
in a length of ∼Re/30 (in diameters).22

The flow state was monitored using Mearlmaid Pearlessence as flow
visualization and a vertical thin sheet of light was used to illuminate the
flow across a diameter of the pipe. Observations were made in a direc-
tion orthogonal to the lightsheet and this technique was used to pro-
duce Fig. 1 and the other photographs used here. Single point velocity
measurements were made using a laser Doppler velocimeter in separate
experiments. Velocity profiles are presented in Fig. 3. The mean velocity
profiles obtained in laminar flows are in very good agreement with the
well known parabolic velocity distributions with u = 2U where u is the
maximum centreline speed and U is the mean. The mean velocity profile
in turbulent flow obtained at Re = 5300 is also in good agreement with
previous measurements (i.e. Ref. 23).
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Fig. 3. (a) Velocity profiles measured in laminar flows at Re=2000 and 4000. The solid line
corresponds a parabolic profile. (b) A mean velocity profile measured in a turbulent flow a
Re=5300 (the lines correspond to a linear and log fit).

3. RESULTS AND DISCUSSION

3.1. Evolution of Disturbances

Hof et al.14 developed an injection system which permits the ampli-
tude and width of the perturbation to be varied independently. In essence,
the disturbance is a pulse of fluid which is injected through a set of six
small holes arranged azimuthaly around the pipe. The pulse or boxcar has
a width �t and a nondimensional amplitude A which is the ratio of the
amount of fluid injected to the mean mass flux of the pipe. For Re≥2000
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and at a given value of �t , there is a threshold amplitude Ac above which
transition to turbulence takes place. The disturbance is advected along by
the mean flow and hence the initial width of the disturbed region is pro-
portional to Re. Observation suggests that this is a key parameter in the
transition process. Specifically, provided that more than 10D of the flow is
disturbed, the threshold amplitude of the perturbation is found to be inde-
pendent of Re. In fact, the response curve obtained over the entire range
of lengths of perturbation widths can simply be scaled by Re.14

In the present experiments, we have used the same approach but first
report results using a single jet to simplify the evolution procedure. A box-
car disturbance was introduced into a fully developed Hagen–Poiseuille
flow 185 diameters from the pipe entrance at Re = 2000 through a sin-
gle hole. The injected volume flux was controlled to within 10−2 ml/second
and a video camera travelling at the mean flow velocity in the pipe
recorded images of the development of the disturbances. In general, for
a relatively small amplitude, the disturbances decayed as they progressed
downstream. For amplitudes close to the threshold, the disturbances were
initially amplified but then decayed with increasing distance downstream.
At higher amplitudes, transition to a patch of sustained disordered motion
occurred and the flow contained an “equilibrium turbulent puff.”19 Two
typical sequences, one obtained just below the threshold for transition and
the other just above it are shown in Fig. 4. The development of a decay-
ing disturbance can be seen in Fig. 4(a)–(f) and the relatively rapid devel-
opment of a puff is shown in Fig. 4(g)–(l).

The principle features associated with the decaying disturbance
(Fig. 4(a)–(f)) are the spread of the jet within the flow (Fig. 4(a)–(c))
and the development of well-defined flow structures (Fig. 4(b)–(c)). Fur-
ther downstream, the structures are simply advected (Fig. 4(d) and (e))
along by the mean flow up to ∼14 diameters from the point of injection.
In practice, experience shows that decay of the perturbation has already
started at six diameters (D) before approximately unidirectional flow is
recovered at 30 diameters (Fig. 4(f)).

In the case of a jet disturbance which triggers a puff (Fig. 4(g)–(l)),
the jet again spreads within the flow and structures are again created
across the flow field (Fig. 4(h)) which are similar in form to those seen
in the decaying case (Fig. 4(b)). However, the subsequent sequence, Fig.
4(i) and (j), show the rapid creation of a puff where we only illustrate the
trailing edge features here. Further downstream, (Fig. 4(k) and (l)), break-
down to turbulence takes place so that disordered motion covers almost
the entire field of view.

We now consider the effect of a disturbance which has the form of
a short boxcar of suction. Again a threshold was found and we illustrate
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Fig. 4. Development of a perturbation where a small amount of fluid was impulsively
injected into the bulk flow through a 3 mm hole. Re = 2000 and in the snapshot sequence
(a)–(f) the perturbation decays. Images taken at 1, 2, 3, 6, 14 and 30 diameters downstream
from the injection point using a camera travelling at the mean speed of the flow. In the
sequence (g)–(l) a slightly larger amount of fluid was injected and a puff is created.

typical evolution sequences on either side of the boundary by the sets of
photographs given in Fig. 5. It is interesting to note the levels of flux
used now are typically two orders of magnitude larger than for the case of
injection. This significantly larger perturbation means that obtaining a full
threshold curve as a function of Re was not possible. Instead, we include
the flow visualization results here to compare and contrast with the pro-
cesses involved in transition created by injection. The immediate differ-
ence which can be seen in Fig. 5(a) and (g) is a large distortion of the
flow field immediately after the perturbation has been applied instead of
a jet. Eddies are then formed close to the boundary (Fig. 5(b) and (h))
and these grow to create disturbances away from the wall in both cases
Fig. 5(c) and (d) and (i)–(k). However, decay of the disturbed flow field is
then evident in Fig. 5(e) and (f) whereas the rapid nonlinear development
of a puff can be seen in Fig. 5(k) and (l).
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Fig. 5. Development of a perturbation where a amount of fluid was impulsively sucked
through a 3 mm hole. Re = 2000 and in the sequence (a)–(f) the perturbation decays. Images
taken at 1, 2, 3, 6, 14 and 30 diameters downstream from the perturbation point. In the
sequence (g)–(l) a slightly larger amount of fluid was extracted and a puff is created.

3.2. Decay of Injected Disturbances

All previous investigations have indicated that the flow is globally
stable for Re ≤ 2000 although precise values of this estimate have only
recently been established18. Hence all disturbances created in the flow field
below this value will decay since turbulent motion cannot be sustained.
The present investigation was carried out to test this hypothesis by inject-
ing large amplitude well defined perturbations into fully developed Hagen–
Poiseuille flow and observing their development as they progressed down-
stream. Here, the perturbation was created using a boxcar pulse of fluid
which was injected tangential to the main flow via a ring of six equally
spaced 0.5 mm holes. Observations were made using flow visualization
and a travelling video camera which recorded images of the patch of
disordered fluid as it traveled along. Several light boxes were suspended
above the pipe and provided a light sheet along its length. The lights
were switched on and off sequentially to avoid heating effects. In the
first 100D the perturbation evolved in a complicated way similar to
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those described above. After this initial transient phase the disturbed
flow was observed to be localized and traveled along close to the mean
speed of the flow. The values of Re investigated were such that the
final state far downstream was, typically, laminar flow. Image analysis
of the video recording permitted estimates to be made of the positions
at which disturbed motion decayed (measured in diameters D from the
location of perturbation input). The initial stage of the decay was sub-
tle but the final collapse was clear since a rapid return to featureless flow
was observed.

The results presented in Fig. 6(a) and (c) are plots of the probability
of observing a localized disturbed region of flow, plotted as a function
of distance downstream in D from the point of injection of the pertur-
bation which corresponds to zero on the abscissa. The downstream limit
was set by the length of the pipe at 500D from the perturbation input
location. This was not a severe limitation in practice since very few decay-
ing disturbances survived to this station. The initial conditions for the
perturbation were such that they were all 10D long and the amplitudes
used in Fig. 6(a) and (b) and (b) and (c) were A = 0.1 and A = 0.01,
respectively. Between 40 and 100 independent experimental runs were per-
formed for each value of Re in order to obtain good statistical estimates
for the distance of propagation. The straight lines correspond to least
squares fits of exponentials such that P(D) ∝ exp (−εD), where ε is the
rate of decay of the disturbed state. The quality of the fits indicate that
the disturbed flow decays exponentially to a good approximation24. It can
be seen in Fig. 6(a) and (b) that the slopes are significantly steeper for
smaller values of Re, i.e. there is faster decay at lower Re. This behaviour
is expected and is consistent with observations by Bottin and Chaté25 for
experiments on plane Couette flow and Faisst and Eckhardt26 for a model
pipe flow.

A useful measure that can be extracted from the exponential fits is
time required for half the initial states to decay which is defined as τ =
(ln 2)/ε. We will refer to this as the “half-life” of a perturbation. Graphs
of the half life of the disturbed flow for the two perturbation ampli-
tudes A = 0.1 and A = 0.01 are shown plotted as a function of Re in
Fig. 6(b) and (d) where a divergence in the timescales is evident. Plots of
the inverse of half-life τ−1 versus Re are shown in the respective insets of
Fig. 6(b) and (d). It may be seen that τ−1 passes through zero at 1695±20
and 1820 ± 20, respectively. At these critical values of Re the half-life τ

approaches infinity and the perturbation does not decay but develops into
a turbulent puff which persists. Hence this gives a method for estimating
the threshold for transition to turbulence at low Re. The estimate is con-
sistent with the recent value of Re=1760 obtained by observing the decay
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Fig. 6. (Color on-line) Turbulent lifetimes for different transitional Reynolds numbers for
two different amplitudes: A= 0.1 and A= 0.01. (a) Probability P for a single run to still be
turbulent after a distance D for seven Reynolds numbers as indicated. Between 50 and 100
experimental runs been evaluated per Reynolds number. The distributions are described well
by exponential distributions shown as straight lines. (b) Half-life τ of the turbulent lifetimes
as a function of Re. The error bars indicate the uncertainty in the measurements. The inset
shows the inverse half-life versus Re and a linear fit, corresponding to a law τ(Re)∝ (Rec −
Re)−1, with Rec ≈1695 and 1820, respectively, for A=0.1 and A=0.01.

of turbulence by reducing Re.18 This agreement is encouraging and points
to a robustness of this lower bound since the present experiment involves
the injection of relatively large amplitude perturbations which have an
unknown effect on the mean flow whereas the earlier work18 is concerned
with the decay of a “natural” state of the system, a turbulent puff.
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+

Fig. 7. (Color on-line) Finite amplitude threshold curve A versus Re. The amplitude A of
the perturbation is made nondimensional by dividing by the mass flux of the main flow. The
lower bound was estimated by measuring a divergence in time-scales in the decay of injected
perturbations. The Re−1 was found by increasing the amplitude of the perturbation at fixed
Re.

3.3. Finite Amplitude Stability Curve

As discussed above, when an injection system is used which permits
the amplitude and width of the perturbation to be varied independently,
the transition threshold is fixed for any given value of Re provided the
initial disturbance affects a length ≥ 10D of the flow. This enabled the
uncovering of a scaling law which indicates that the amplitude of pertur-
bation required to cause transition scales as O

(
Re−1

)
for 2000 ≤ Re ≤

20,000. An interpretation of this result is that it reflects the balance
between viscous and inertia terms in the Navier Stokes equations.

We have added to these results and a compilation of both sets of
results is presented in Fig. 7. These results were obtained at fixed values
of Re and increasing the amplitude of the perturbation until transition
was observed. As discussed above, this is a probabilistic process so that
on average 40 runs of the experiment had to be performed for each value
of Re. Reliable estimates of the threshold were obtained and there is very
good agreement between these new observation and the previous results so
that a O

(
Re−1

)
scaling law is confirmed. It is interesting to note that the

same scaling law has also been found recently for a single jet27. The esti-
mates for the lower bound for sustained turbulence have been added to
the scaling law data in Fig. 7. Hence there is now a clear demarcation in
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(A,Re) space between regions where laminar flow persists and turbulent
or disordered flow is possible.

4. CONCLUSION

The results presented here are in accord with theory in that they sup-
port that notion that the transition threshold in a circular pipe is finite
amplitude in nature. Despite the obvious experimental difficulties such as
deciding on the exact nature of the amplitude and form of any imposed
“perturbation”, a definite scaling law for the threshold for transition has
been uncovered. Moreover, a reliable estimate for the lower bound for sus-
tained turbulent motion has been obtained. Qualitative similarities with
recent work in rotating 3He–B12,13 are intriguing and it remains to be seen
if this overlap can be developed further.
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