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A B S T R A C T

The complex flow resulting from the laminar-turbulent transition in a sudden expansion pipe flow, with ex-
pansion ratio of 1:2, subjected to an inlet parabolic velocity profile and a vortex perturbation, is investigated by
means of direct numerical simulations. It is shown that the threshold amplitude for disordered motion is de-
scribed by a power law scaling, with -3 exponent, as a function of the subcritical Reynolds number. The in-
stability originates from a region of intense shear rate, which results on the flow symmetry breakdown. Above
the threshold, several unsteady states are identified using space-time diagrams of the centreline axial velocity
fluctuation and their energy. In addition, the simulations show a small hysteresis transition mode due to the
reestablishment of the recirculation region in the subcritical range of Reynolds numbers, which depends on: (i)
The initial and final quasi-steady states, (ii) the observation time and (iii) the number of intermediate steps taken
when increasing and decreasing the Reynolds number.

1. Introduction

The flow through an axisymmetric sudden expansion in a circular
pipe is a basic configuration, which occurs in many industrial appli-
cations, such as heat exchanger, mixing chamber, combustion chamber,
etc. This basic geometry is also used as a building block to model more
complex flows such as those occurring in arterial stenoses
(Pollard, 1981), pistons (Boughamoura et al., 2003), and transportation
pipes (Koronaki et al., 2001), among others. In these applications, the
capacity of predicting when the flow will become turbulent is crucial. In
the literature, there are many efforts in theoretical analysis
(Teyssandiert and Wilson, 1974), experimental explorations (Back and
Roschke, 1972; Latornell and Pollard, 1986) and numerical simulations
(Macagno and Hung, 1967; Varghese et al., 2007) focusing on this
problem, or a similar geometries such as the planar abrupt expansion
(Fearn et al., 1990; Xia et al., 1992; Baloch et al., 1995; Bertolotti et al.,
2001; Varghese et al., 2007; Tsukahara et al., 2011). More recently,
Lebon et al. (2018a) found a new mechanism for periodic bursting of
the recirculation region in the flow of a circular pipe with the expansion
ratio of 1:2. Yet, a consensus about the sequence of events in the

transition from laminar to turbulence seems to be relatively well-es-
tablished, but the exact value of critical Reynolds number is still not
firmly determined, and the different transition scenarios are not yet
fully elucidated.

The flow is mainly controlled by the inlet Reynolds number,
=Re Ud/ , where U is the bulk velocity at the inlet, d is the inlet

diameter and ν is the fluid kinematic viscosity. In the laminar state, the
flow is axisymmetric. As Re increases, the flow starts to break its
symmetrical properties but remains steady until = ±Re 1139 10 as re-
ported in the experiments by Mullin et al. (2009). It should be noted
that the onset of symmetry breakdown is at much lower value for the
case of channel sudden expansion, as reported to be Re≈40 by
Fearn et al. (1990) and =Re 216 by Drikakis (1997). In the sudden
circular pipe expansion flows, oscillatory and intermittent bursts were
reported to appear at Re≈1567 ± 16 by Mullin et al. (2009),
1500< Re<1700 by Sreenivasan and Strykowski (1983), and

=Re 750 by Latornell and Pollard (1986). Then, the flow develops into
localised turbulence at even higher Reynolds numbers (Lebon et al.,
2018b).

Recently, a global stability analysis was performed by Sanmiguel-
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Rojas et al. (2010). They showed that the flow can remain axisymmetric
up to Re≈3273, which is much larger than the value found experi-
mentally. Subsequent simulations by Cliffe et al. (2011) also indicated
that the steady supercritical bifurcation point lies at even higher Rey-
nolds numbers, i.e. Re≈5000. Moreover, a detailed study of transient
growth stability was performed by Cantwell et al. (2010). They showed
that the sudden expansion amplifies the energy of infinitesimal per-
turbations up to six orders of magnitude in the inlet, which then decay.
The difference between the critical Re in experiments and simulations
may be explained by the fact that, in experimental studies, the im-
perfections of the apparatus have a strong impact on the measured
critical Reynolds number. Therefore, the values of critical Reynolds
number seem to be dependant both on the perturbation nature and its
amplitude. In this case, a numerical simulation with a well-defined fi-
nite amplitude perturbation is required to better understand the un-
derlying physics.

Many direct numerical simulations (DNS) on 1:2 expansions were
performed before, but with an initial arbitrary velocity field. For ex-
ample, Tsukahara et al. (2011) showed in a orifice configuration how
the turbulent kinetic energy evolves into localised turbulence.
Moallemi and Brinkerhoff (2018) used a steady parabolic inflow in a
circular pipe expansion and showed the emergence of an instantaneous
fluctuating vorticity fields with a maximum near the reattachment
point of the recirculation region. The first DNS of finite amplitude
perturbation in sudden expansion flow was performed by Sanmiguel-
Rojas and Mullin (2012), where many interesting results are reported.
They showed that, for a range of Re, the flow in laminar state can be
forced to disordered motion when a transverse velocity perturbation is
added at the inlet. The minimal amplitude of the transverse velocity
perturbation required to initiate disordered motion scaled with Re 0.006.
This result has an important role in the passive flow control. Now, it is
natural to ask if this result is universal? Will another kind of pertur-
bation have the same behaviour? Is the scaling law still valid? The
question is crucial especially by knowing that the previous perturbation
scheme used by Sanmiguel-Rojas and Mullin (2012) is simply a trans-
verse velocity disturbance in the velocity field. Therefore, it does not
satisfy the no-slip boundary condition at the inlet wall. Another inter-
esting result is: When Sanmiguel-Rojas and Mullin (2012) increased and
then decreased Re, a hysteresis loop was found for 1450< Re<1850.
This point deserves more attention, since in the original work, the
process of variation of Reynolds number as well as the physical time of
the reported flow state are not specified. Recently, Selvam et al. (2016)
presented results on a vortex perturbation but no systematic study of
the amplitude threshold and the hysteresis was carried out. One may
ask, will the hysteresis occur if Re varies in quasi-static manner? Or will
the results change if the observation time is different? In the present
study, the authors propose a similar study, but with the vortex dis-
turbance in order to revisit the threshold scaling and the hysteresis loop
behaviour.

2. Numerical set-up

The present work focuses on a circular pipe flow with a sudden
expansion with the expansion ratio of 1:2. The fluid flow system is
solved using Nek5000 (Fischer et al., 2008), a well-validated high-order
spectral element code for transitional and fully turbulent flows (Selvam
et al., 2015; Ducoin et al., 2017). The governing equations are mass and
momentum conservations in an isothermal incompressible limit:

=u· 0 (1)

+ = +
t

p
Re

u u u u· 1
(2)

where u is the velocity field, p is the pressure, and t is the physical time.
The density of flow is set to unity for simplicity.

The computational domain is axisymmetric as depicted in Fig. 1(b).

The region upstream of the expansion is called inlet and has a diameter,
d, and a 5d length. The downstream region, after the expansion, has a
diameter =D d2 and a length =L d150 . The whole domain contains
62 300 spectral elements where each element consists of P3 Gauss–Le-
gendre–Lobatto (GLL) points, P being the polynomial order. =P 5, with
total number of 7.9 million calculating points, is used for the reported
results. Moreover, additional simulations, performed with =P 6 (13.5
million GLL points) for showed the laminar recirculation length and the
drag coefficient remain essentially the same. A classical set up for the
inlet velocity, located at =z d5 , is the Hagen–Poiseuille profile, which
satisfies the non-slip condition at the inlet wall:

= = =r d z du ( /2, 5 ) 0inlet
o when = + =r x y d/22 2 and

= = +x y z d U x y du e( , , 5 ) 2 [1 4( )/ ] ,inlet
o

z
2 2 2 (3)

where (ex, ey, ez) are the three unit vectors of the cartesian base.
In order to initiate turbulence in subcritical Re, a vortex perturba-

tion is added to the inlet parabolic profile (Selvam et al., 2016). This
modifies the expression of velocity inlet as:
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where and Ω are the amplitude and the intensity of the vortex per-
turbation, respectively. Ω is defined by: (i) The vortex radius, =R d/4,
(ii) the center (xΩ, yΩ) and (iii) the distance from the centerline to the
center of the vortex: = +r x x y y( ) ( )2 2 . Then, the expression
of Ω is given by:

=
>

r R
R r d R r R

r R

1, /2
8( )/ , /2
0, (5)

The position of the vortex is fixed with =x d/4 and =y 0, such as
the inlet profile obeys the incompressible, non-slip and non-penetrate
boundary conditions. The radius and the position of the vortex, r , is
chosen such that Ω vanishes at the boundary. By injecting = 0 into
Eq. (4), one can easily verify that uinlet vanishes at the boundary as well.

Preliminary tests with a large vortex perturbation on the pipe cen-
treline indicate the required amplitude to initiate turbulence is rela-
tively large. It corresponds to the limit case of the rotating
Hagen–Poiseuille flow discharging into a sudden expansion (Miranda-
Barea et al., 2015). By positioning the vortex at =x y d( , ) ( /4, 0), the
vortex breaks the axial symmetry (Wu et al., 2015) of the flow and
deflects the recirculation region. The distribution of Ω(x, y) can be vi-
sualised in Fig. 1(a).

3. Distinction between different states of instabilities

The laminar or turbulent state of a flow can be monitored from the
time evolution of the drag coefficient:

=
= = =

C t
dLU

u
r

r d dz( ) ,z
z

L
z

r d
2

0 0

2

(6)

where d and =L d150 are the radius and the length of the downstream
pipe, respectively. Here = +r x y2 2 and = y xarctan( / ) are the po-
sitions in the radial and azimuthal direction in the cylindrical co-
ordinate system, respectively.

Table 1 presents a summary of the selected simulations along with
parameters: Re, , initial conditions and observed states. While the
laminar state is noted as LS, there exist two unsteady states, US1 and
US2, with distinct amplitudes and axial position for the disordered
turbulent patch. For LS, Cz is steady, i.e. dCz/dt≈0. However, for US,
Cz is unsteady and larger than the laminar Cz, i.e. Cz,LS< Cz,US.
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In order to describe the unsteady flow patterns, the axial velocity
fluctuations, u ,z at the pipe centreline are obtained by subtracting the
instantaneous axial velocity, uz, to the steady laminar case uz

0 at the
same spatial location:

=u z t u z t u z(0, 0, , ) (0, 0, , ) (0, 0, ),z z z
0 (7)

and plotted in a space-time diagram. The reference value uz
0 is the la-

minar state with no perturbation, i.e. = 0. The diagram is con-
structed from horizontal lines at given times. The colour within the line
is the value of uz described by 1500 points along the centreline in the z
direction at each 100 time-step. The final diagram is the superposition
of all computed times with the resolutions of 0.1d in space. This dia-
gram is completed by the time evolution of Cz graduated at the top of
the diagram. Fig. 2 presents uz space-time diagrams and the evolution
of drag coefficient, Cz, for four different perturbation amplitudes, , at

=Re 2000. The colour intensity in the diagrams increases with the de-
celeration of the streamwise velocity. The centreline position is typical
of this flow configuration and other radial positions close to the

centreline would lead to essentially the same qualitative behavior as the
localized turbulence fills up the pipe radially. There are two main
mechanisms that cause this deceleration. The first one is when the
perturbation breaks the flow symmetry down and subsequently the
centroid maximum value in the velocity profile is moved away from the
centreline. The second mechanism is when the flow becomes dis-
ordered, i.e. the instantaneous streamwise velocity fluctuates. More-
over, the mean velocity profile is flattened, which also results in a de-
celeration in the pipe centreline and is identified in the space-time
diagrams by dark (blue) colour and a noisy interface. From the interface
and the evolution of Cz, it is clear that the unsteady pattern is closely
related to the fluctuations of Cz. For low amplitude disturbance, or low
values of , i.e. 0.09, depicted in Fig. 2(a) and (b), the disordered
turbulent patch is carried downstream, Cz relaminarises for
750< t<1000 and then disordered motion reappears, suggesting an
intermittent behaviour. For = 0.2, depicted in Fig. 2(c), the dis-
ordered motion initiated by the perturbation remains unsteady and is
labelled US1, as long as the perturbation is applied. Note that the po-
sition of the trailing edge of the turbulent patch and Cz fluctuate with
time. For even larger , see e.g. Fig. 2(d), the position of the trailing
edge is firmly located at z≈10d and is labelled US2.

Typical flow fields, for =Re 2000, are shown in Fig. 3. The contour
plots present the laminar asymmetric flow pattern, see Fig. 3(a), and the
breakup of the recirculation region into localised turbulent patch, see
Fig. 3(b) and (c), which can move axially along the downstream sec-
tion.

In Fig. 4, a summary of the simulation cases is presented in the form
of a threshold curve where the boundaries between LS and US2 are
shown. Systematically, the US1 is between the LS and the US2 in-
dicating the border between laminar and disordered motion is sensitive
to initial conditions. The threshold can be described by a power-law fit:

Re ,3 which is much steeper than the value ( 0.006) that is re-
ported by Sanmiguel-Rojas and Mullin (2012) indicating that the flow is
more and more sensitive as Re increases. Note that the perturbation
used by Sanmiguel-Rojas and Mullin (2012) is a transverse velocity
(tilt), i.e. an addition of a y-transverse velocity component to the
parabolic inlet flow, which creates a velocity discontinuity in the inlet
section and at the wall. The effects of the generated shear could depend
on the mesh resolution as well as on how the solver interpolates the
discontinuity. A recent experimental study from Lebon et al. (2018a,b)
has shown a power-law of Re ,2.3 which is in closer agreement to the
present numerical results. In the experiments, several disturbances
mechanism were tested: (i) Single, (ii) suction and (iii) periodic in–out
or synthetic jet from a hole in the wall. Clearly, a direct comparison
between the experiments and the DNS is not straightforward for the
reason that the vortex perturbations and the jet disturbances are dif-
ferent. Yet, the effect of the vortex perturbation or the jet disturbance is
to break the flow symmetry and distort the recirculation region.

4. Transient growth of unsteady flow patterns

Taking advantage of the time-accurate and 3D opportunities of our
DNS results, the unsteady flow patterns are examined. Figure 5(a)
presents the space-time diagram for =Re 1360 and = 0.2, corre-
sponding to case 5a in Table 1. The flow experiences several sequences
of laminar, oscillatory and disordered motion, as well as

Fig. 1. (a) Axial vorticity of the vortex per-
turbation ( =R d/4, =x y d( , ) (0, /4) and

= 1) and (b) Sketch of fluid domain with 2
cross-sections: the inlet and the outlet mesh.

Table 1
Summary of the simulations. Abbreviations: LS: Laminar state and US: Unsteady
state. The initial condition could be the Hagen–Poiseuille profile, noted as H-P,
or the final times of a past simulation.

Case Re Initial condition Remark

1 1100 0 H-P LS
1a 1100 0.458 1 LS
1b 1100 0.480 1 LS, US2
1c 1100 0.494 1 US1
2 1300 0 H-P LS
2a 1300 0.2 2 LS
2b 1300 0.239 2 LS, US2
2c 1300 0.385 2 US1
3a 1325 0.2 2a LS
4a 1350 0.2 3a LS
5a 1360 0.2 4a LS, US2
6a 1375 0.2 4a LS, US2
7a 1400 0.2 6a LS, US2
7b 1400 0.2 2a LS, US2
6b 1375 0.2 7b LS, US2
5b 1360 0.2 6b LS, US2
4b 1350 0.2 6b LS, US2
3b 1325 0.2 4b LS, US2
2b 1300 0.2 3b LS, US2
8 1600 0 H-P LS
8a 1600 0.123 8 LS
8b 1600 0.128 8 LS, US2
8c 1600 0.16 8 US1
9a 1700 0.2 9e US1
9a 2000 0.0773 9 LS
9b 2000 0.0782 9 LS, US2
9c 2000 0.09 9 LS, US2
9d 2000 0.1 9 US2
9e 2000 0.2 9 US1
9f 2000 0.5 9 US1
10a 1700 0.2 3a US1
L1d 1700 0.2 9e US1
L2d 1350 0.2 L1d US2
L3d 1000 0.2 L2d LS
L2i 1350 0.2 L3d US2
L1i 1700 0.2 L2i US1
L3dbis 1325 0.2 L2d LS
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relaminarisation of the turbulent localised patches. In Fig. 5(b), two
profiles of uz along the centreline at =t 1000 s, before the emergence of
a turbulent patch, and at =t 2500 s, during a turbulent patch, are
presented. The profiles can be divided into three regions. In the first
region, z<20d, the flow experiences a gradual deceleration. For
20d< z<50d, weak wavy unsteady oscillations are observed. The
wavelength is ≈ 2.3d. In the third region, z>50d, the oscillations
decay for =t 1000 s, whereas they are considerably amplified for

=t 2500 s. The fluctuations in the unsteady localised patch become
large compared to the oscillations discussed before.

Fig. 6 presents two streamwise velocity fluctuations, u ,z signals,
recorded respectively at =z d40 and =z d80 along the pipe centreline.
The signals at =z d40 depicted in Fig. 6(a) and (c) have a similar noise
amplitude u 0.1z and frequency around 0.2 Hz. However, the signals
presented in Fig. 6(b) and (d) at =z d80 have a different behaviour,
correspond to LS and US2, respectively. Thus, at early stages of devel-
opment, the differences between the two cases are not particularly
striking, so the transition process involves subtle effects. These ob-
servations are in disagreement with the transient growth analysis
(Cantwell et al., 2010) in the sense that the disturbance generated at the

inlet grows while traveling downstream, mainly because of its inter-
actions with the recirculation region. In the current DNS, the present
methodology uses finite amplitude perturbation, which can either
decay or grow. Furthermore, the perturbation can remain silent or
bounded for a long time and then suddenly grow because of the non-
linear interactions between the unsteady flow and the downstream of
the recirculation region, where the reattachment point is located.

The unsteady flow pattern can be also analysed by using a Reynolds
averaging technique based on a LS domain. The base flow is approxi-
mated by taking the average fields during the LS from =t 1500 to 1800
s:

= < > < <x y z x y z tu u( , , ) ( , , , ) .t1500 1800 (8)

Then, the unsteady pattern can be expressed using:

=x y z t x y z t x y zu u u( , , , ) ( , , , ) ( , , ). (9)

The amplitude of u′(x, y, z, t) is small and stays bounded in laminar
phase. For convenience, the coordinate system is converted from
Cartesian, u′(x, y, z, t), to cylindrical, u′(r, θ, z, t). Next, the Fourier

transform of u′(r, θ, z, t) in azimuthal direction, noted as û , is

Fig. 2. Space-time diagrams of the centreline perturbed streamwise velocity, u ,z and drag coefficient, Cz, as a (red) line, indicated on the top, for =Re 2000 at (a)
= 0.0782, (b) = 0.09, (c) = 0.2 and (d) = 0.5. All the diagrams use the same colour code shown on the top right corner, such that light colour corresponds to

laminar flow. The whole pipe section downstream the expansion, up to =z d150 , is also sketched in the top right corner below the colour bar.

Fig. 3. Contour plot of instantaneous streamwise velocity at =Re 2000, =y 0 and zoomed into the range of 0< z<100d. (a) LS at = 0.09, =t 750, (b) US2 at
= 0.09, =t 1250 and (c) US1 at = 0.2, =t 1000.
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computed:

=r k z t r z t e du u^ ( , , , ) 1
2

( , , , ) ,i k

0

2
2

(10)

where, the azimuthal modes energy are computed point-wise as:

=
e r k z t
e r k z t
e r k z t

u r k z t
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,
z

y

z

x

y

z

2

2

2 (11)

and the total energy of each azimuthal modes is the sum of all three
directions.

From the linear stability point of view, the perturbation u′ could be
decomposed into growing and decaying modes. However, in our case,
its magnitude stays bounded and fluctuates for a long time, before the
transient growth starts and US2 emerges. It suggests there should be a
slow growing mode. The observation of the time evolution of all azi-
muthal modes, over all z, r and kθ, reveals no steady increasing of

energy. Instead, in addition to the regular unsteady pattern, a pertur-
bation appears in the steady zone, z<20d, and evolves into turbulence.
A closer look into the time evolution of the perturbation amplitude in
the vicinity of transition, for 1900 s < t<2200 s, is shown in Fig. 7 for
an arbitrary value of r, here =r d/4, and three different streamwise
positions. The other values of r exhibit similar behaviours. The fluc-
tuations of energy in streamwise direction, ez(r, kθ, z, t), or spanwise
direction, = +e e e ,xy x y are recorded as a signal in time for given values
of z, r and kθ. The magnitude of the energy of the azimuthal modes is
several orders smaller than the streamwise energy. From these signals, a
local energy peak in the time-evolution can be observed and is located
close to the transition. This peak can be recorded as a time tp corre-
sponding to the maximum of the energy signal. The values of collected
tp will be a function of spatial positions r, z and the mode kθ. By com-
paring the fluctuation patterns, it is found that fluctuations in stream-
wise direction are approximately two orders of magnitude stronger than
the sum of energy fluctuations in the two other spanwise directions in
the laminar region, z<20d. However, the gap in the energy levels gets
closer at the transition point in the second zone: z≈50d and the non-
linear region, in the third zone: z>60d. Another observation is that the
position of the energy peaks mainly depends on the streamwise posi-
tion, z, and seems to be independent of spanwise variables, r and kθ. For
z≈17d, the peaks start to be observed at =t 2080 s.

Fig. 8 presents the contour plots at =z d17 of different streamwise
velocity in the cross-sectional plane. It is found that the most intense
perturbation in the energy peak appears close to the strongest shear rate
position in the streamwise velocity mean profile u ,z see Fig. 8(b). This
suggests the energy peak is related to a shear instability and is in-
dependent of the regular unsteady pattern uz. The regular unsteady
pattern, see Fig. 8(c), is the fluctuation collected before the peak
emerges. The latter structure is different from both the peak velocity
and the mean flow profile.

Considering the first four modes (kθ ∈ {0, 1, 2, 3}), as shown in
Fig. 7, one can notice the position of local energy peak evolves
smoothly and linearly in the streamwise direction in the range of
10d< z<50d. This suggests that the energy peak is a perturbation that
appears, gets carried downstream by the main flow and amplifies. In
Fig. 9(a), the tracking of the local peaks velocity in space, z, and time, t,
is shown for all the value of r, where a linear fit of +z V c/ 0 1 with c1 is a
constant and V0≈ 0.667. The error of the tracking process mainly
comes from the output frequency of the data and the fluctuation in z
direction. All the peaks are found in the range 10d< z<40d. It is
interesting to mention that the peak evolution tracking in space, z, and

Fig. 4. Critical amplitude, , of the vortex perturbation as a function of Re. The
(green) triangles down indicate US and the (blue) triangles up LS. The (red)
dashed line is power-law fit: Re 3.

Fig. 5. (a) Space-time diagram for =Re 1360 and = 0.2, corresponding to case 5a. (b) u z t(0, 0, , )z profiles along the centreline at =t 1000 (LS ) and =t 2500
(US2 ).

M.Q. Nguyen, et al. International Journal of Heat and Fluid Flow 76 (2019) 187–196

191



in time, t, collapse for all the values of spanwise variables (r and kθ). As
a consequence the magnitude of the energy peaks over time grows
following a power law as shown in Fig. 9(b). The growth for the first
four azimuthal modes takes place until z≈50d where the energy

saturates. It is noted that the phenomenon of the convective instability
is also observed in the numerical simulations of flow over a backward-
facing step (see i.e. Blackburn et al., 2008).

Fig. 6. u z t(0, 0, , )z signal over time for =Re 1360 and = 0.2 recorded at =z d40 (a ) and =z d80 (b ). The time range of (a) and (b) are in LS, whereas the
time rage in (c) and (d) are in US2, recorded at =z d40 (c ) and =z d80 (d ). The time range in this figure are marked with the corresponding colour in
Fig. 5(a).

Fig. 7. Time-evolution of the energy of the most relevant azimuthal modes at =r d/4 for =Re 1360 and = 0.2. The colour code is: Blue line for the mode 0, red
(thick) line for the mode 1, black line for mode 2, and magenta line for mode 3. The three plots in upper row (a,b,c) show the energy of fluctuation pattern in
streamwise direction, ez, and the three plots in the lower row (d,e,f) show the energy of fluctuation pattern in spanwise direction. The three columns correspond to
(a,d) =z d17 , (b,e) =z d47 and (c,f) =z d67 . The (green) circles indicate the peaks of energy.

Fig. 8. Contour plot in the cross-sectional plane at =z d17 for =Re 1360 and = 0.2. (a) = = = = = =u z d u z d t u z d t( 17 ) ( 17 , 2080) ( 17 , 2070),z
p

z p z (b) mean
flow: =u x y z d( , , 17 )z and (c) regular unsteady pattern that remains bounded over time: = =u x y z d t( , , 17 , 2070)z
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5. Hysteresis

In general, a hysteresis appears when two flow solutions can exist
for the same Re. Therefore, the initial conditions and the parameters of
the disturbance control the appearance of the two solutions. To test the
hysteresic behaviour, two branches of the simulations with Re in-
creasing and Re decreasing are investigated. The Re increasing branch
starts from laminar flow, whereas the Re decreasing branch begins from
an unsteady state, here US2. This approach was also considered by
Sanmiguel-Rojas and Mullin (2012) using a transverse velocity dis-
turbance of amplitude δ. Depending on δ and Re, a domain of hysteresis
was observed. Specifically, for = 0.001, the coexistence region was
reported for 1475< Re<1850. Moreover, they found that the hys-
teresis region grows as δ decreases. It is not possible to directly compare
the effect of the transverse velocity disturbance with our vortex dis-
turbance because these perturbations are of different nature: the vortex
disturbance perturbation introduces rotation, whereas the transverse
velocity disturbance introduces a translation to the flow. However, the
following results discuss the universality of the hysteresis behaviour. A
series of eight simulations were performed, with a fixed amplitude of
vortex perturbation, = 0.2. The initial condition is case 3a with

=Re 1300. When the simulation time reached 1500 s, the final state is

analysed and used as the initial condition for the next run at a higher
Re. Then, Re, is increased with steps of 25, up to =Re 1400 (case 4a, 5a,
7a, 8a), as depicted in the space-time diagrams of Fig. 10(a). In
Fig. 10(b), the decreasing Re branch is initialised with a laminar state
(case 3a), then Re is directly increased to 1400 (case 8b) and the de-
creasing path down to 1300 with a step of 25 (case 7b, 5b, 4b). The
simulations from the increasing and decreasing paths are compared for
the same Re. The results are presented in Fig. 10(a) and (b) and show
minor changes. Looking at the drag coefficient also represented in
Fig. 10(a) and (b), every change in Re initiates a peak or a transient
increase of Cz corresponding to a disordered patch that propagates and
decays downstream. A small hysteresis is found while following this
procedure.

Additional simulations were performed using different Re steps and
a larger range of Re. The decreasing branch started with =Re 2000.
Then Re, is decreased to 1700, 1350 and 1000 (simulation L1d, L2d,
L3d). The results is compared with the increasing branch which start
from =Re 1000 then increase to 1350, then 1700 (simulation L3d, L2i,
L1i). Again, the results are represented in the form of space-time dia-
grams, in Fig. 11(a) and (b). The data show minor differences in the
space-time behaviour. However, the drag, Cz, now suggests a small loop
of hysteresis.

Fig. 9. Tracking position of the energy peak for =Re 1360 and = 0.2. (a) Time and axial position with the scaling represented as a (green) line: = +t z V c/ ,p
0 1 c1 is

a constant and the different colours represented different radial position. (b) Energy peak amplitude, e ,z
p versus axial position, z, for the first four modes: mode 0 ( ),

mode 1 ( ), mode 2 ( ), mode 3 ( ), with the scaling in (green) line =e c zz
p

2
20 where c2 is a constant.

Fig. 10. Hysteresis loop of transitional flows for = 0.2. (a) Space-time diagrams of the increasing Re, (cases 3a, 4a, 6a and 7a) and (b) the decreasing Re, (cases 7b,
6b, 4b and 3b) branches. The diagrams also indicate the value of Cz as a (red) continuous line labeled on the top and the corresponding values of Re on the right.
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When comparing two series of simulations, one could notice: in the
first loop, with small steps of Re ( =Re 25), the two cases with

=Re 1350 are laminar in both increasing and decreasing branches.
Whereas, in the second series, with larger steps of Re ( =Re 350), the
two cases with same =Re 1350 show US2. The space-time diagram of 4
cases with =Re 1350 are extracted in the two series and shown in
Fig. 12. The different behaviour of the same Re suggests that larger
steps of Re could eventually trigger the unsteady behaviour and po-
tentially the hysteresis loop sooner than smaller steps.

To quantify the hysteresis behaviour, S, the integral of the curve Cz

over Re for both increasing and decreasing branches is defined:

=S C Re dRe( ) .z (12)

The relative difference, H, is defined to quantify the hysteresis beha-
viour:

=H S
S

.
(13)

where ΔS is the difference between two branches and S is the mean
value. It is noted that in order to observe the hysteresis phenomenon
clearly, a specific procedure needs to be implemented. In the decreasing

branch, the variation of Re should be large enough to avoid the trans-
formation from US1 to US2. On the other hand, in the increasing
branch, the variation of Re should be small enough to keep the flow
laminar. The loops are presented in Fig. 13, with the decreasing branch
initiated at =Re 2000, then decreasing consecutively to 1700, 1350 and
1325 (simulation L1d, L2d, L3dbis). The increasing branch is initiated
at =Re 1300 and is then increased consecutively to 1325, 1350 and
1700 (simulation 3a, 4a, 10a). Based on the criteria defined in Eq. (13),
this last procedure leads to a hysteresis of =H 27.87% compared to the
two previous loops with the measure of hysteresis are =H 1.15% and

=H 0.75% respectively. In Fig. 13, Cz is obtained from the last 100
seconds of each case and is plotted against Re. The laminar states,

=Re 1325 and =Re 1350, lead to Cz with almost the same value within
0.04%. The unsteady states at =Re 1375 and =Re 1400 have slightly
different final value of Cz within 3% because of the unsteady nature of
the flow. The systematic study of all possible steps with extremely long
time scales would be a tedious investigation thus beyond the scope of
this study. The fact that the hysteresis measure, H, increases with the Re
steps height suggests the hysteresis is related to the re-establishment of
the recirculation region.

Fig. 11. Hysteresis loop of transitional flows for = 0.2. (a) Space-time diagrams of the increasing Re (cases L1d,L2d and L3d) and (b) the decreasing Re (cases
L3d,L2i,L1i) branches. The diagrams also indicate the value of Cz as a (red) continuous line labeled on the top and the corresponding values of Re on the right.

Fig. 12. Hysteresis loop of transitional flows for = 0.5. (a) Space-time diagrams of the increasing Re (cases L1d,L2d,L3dbis) and (b) the decreasing Re (cases 3a, 4a
and 10a) branches. The diagrams also indicate the value of Cz as a (red) continuous line and the corresponding value of Re on the right.
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6. Conclusion

The results of numerical simulations of the flow through a circular
pipe with a sudden expansion have been reported. The expansion ratio
is 1:2 and the inlet velocity profile is parabolic together with a finite
amplitude vortex perturbation. The spatio-temporal velocity fluctuation
have been presented when the perturbation amplitude is larger than the
threshold. In the sub-critical range of Reynolds number, the critical
threshold scales with Re 3 which is consistent with recent experiments
(Lebon et al., 2018a; 2018b). The present vortex perturbation, added at
the inlet, distorts the flow and the recirculation region before the ap-
pearance of disordered motion close to the reattachment point of the
laminar recirculation region.

Using the present DNS, it was possible to monitor spatially and
temporally the velocity fluctuations, the drag coefficient and the energy
of the flow. Furthermore, it was found that the velocity fluctuations in
the streamwise direction are dominant, i.e. about two orders of mag-
nitude larger than the transverse flow components. Additionally, a peak
of energy fluctuations was observed around to the region of high shear
rate close to the point of reattachment of the recirculation region and its
amplitude grows exponentially along the axial position of the expan-
sion. Finally, a hysteresis quantification procedure, increasing and de-
creasing the Reynolds number, indicate a small hysteresis region. Its
measure depends on the step and computation time, suggesting a
transient effect due to the re-establishment of the recirculation region.
In the future, it is planned to extend the present simulations to other
types of disturbances and to expansions with various expansion ratio
and diverging angles (Lanzerstorfer and Kuhlmann, 2012; Jotkar et al.,
2015; Jotkar and Govindarajan, 2019; Kfuri et al., 2017).

The computations were conducted using HPC resources from the
Centre Régional Informatique et d’Applications Numériques de
Normandie (CRIANN) and from the GENCI/IDRIS. The authors ac-
knowledge financial support of the Agence National de la Recherche
(ANR) thought the programme ‘Investissement d’Avenir’ from the la-
boratoire d’excellence Energy Materials and Clean Combustion Center
(LabEx EMC3). Our work has also benefited from helpful discussions
with Ashley P. Willis (University of Sheffield, UK), who suggested this
form for the vortex perturbation.
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