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Transition to turbulence in slowly divergent pipe flow
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76600 Le Havre, France
2Fluid Engineering Laboratory, Department of Mechanical Engineering, University of Tokyo,
7-3-1 Hongo, Tokyo 113-8656, Japan

(Received 30 July 2013; accepted 31 October 2013; published online 27 November 2013)

The results of a combined experimental and numerical study of the flow in slowly
diverging pipes are presented. Interestingly, an axisymmetric conical recirculation
cell has been observed. The conditions for its existence and the length of the cell are
simulated for a range of diverging angles. There is a critical velocity for the appearance
of this state. When the flow rate increases further, a subcritical transition for localized
turbulence arises. The transition and relaminarization experiments described here
quantify the extent of turbulence. The findings suggest that the transition scenario
in slowly diverging pipes is a combination of stages similar to those observed in
sudden expansions and in straight circular pipe flow. C© 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4833436]

The flow in slowly diverging pipes, i.e., cylindrical pipes of slowly increasing diameter along
the pipe axis, as depicted in Figure 1(a), is not well documented despite some fundamental and
practical features. This flow arises in microfluidics when transferring liquid using pipettes and in
physiological flows in veins when blood rushes from organs and tissues towards the heart. Knowledge
of the nature of this flow can also be useful in the context of burner-combustion systems, jet engine
exhaust, thrust-vectoring nozzles, and flows of confined jets.1–3

The general two-dimensional problem of flow stability between two plane walls meeting at a
source point with an angle is known as the Jeffery-Hamel problem. There are several theoretical and
numerical developments where bifurcations have been found4–9 and all these works indicate a rich
and diverse set of solutions even for small diverging angles. Recently, Putkaradze and Vorobieff10

observed, using particle image velocimetry, the multiple vortex flow regime predicted by Kerswell
et al.5

A large body of research has dealt with two-dimensional sudden channel expansions, with sharp
90◦ corners. In the case of a 1:3 sudden expansion flow, it was shown11, 12 that the asymmetry arises
at a critical Reynolds number through a pitchfork symmetry breaking bifurcation. Fearn et al.12 were
able to measure the degree of asymmetry due to small imperfections of the experimental apparatus
and compared it with numerical results.

The present work considers the case of an axisymmetric circular pipe that is slowly expanding.
Solutions for the laminar flow in slightly tapered cylinders assuming the lubrication approximation
(D − d � L) can be found in Bird et al.13 in the form of corrected expressions for the velocity
profiles. Here d and D are the inlet and outlet diameters of the divergent section and L is its length
(see Figure 1(a)). The diverging angle, α, refers to the half angle of the diffuser. When the diameter
varies slowly, the axial velocity profile, which depends on the local diameter, conserves its parabolic
shape. However, in the diverging section, the centerline velocity scales as 1/x2, where x is the axial
position, and a fluid particle experiences a rapid deceleration. Additionally, in laminar flow, the
pressure along the diverging section decreases rapidly.14

The transition to turbulence in the limit case of a 90◦ (abrupt) 1:2 circular pipe expansion
was studied by Sreenivasan and Strykowski,15 Latornell and Pollard,16 and others. The steady flow
becomes unstable and a periodic time-dependent state was observed at Re ∼ 750 and around 1500.
Re is the Reynolds number based on d. In a modern investigation using high resolution magnetic
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FIG. 1. Schematics of the diverging pipe, the experiment, and a flow visualization photograph. (a) Basic geometry, (b) sketch
of the experimental setup drawn up to scale, and (c) flow visualization photograph for Re = 1000 in the diverging pipe (α = 2◦,
β = L/d = 128.88, and D/d = 8.79). The flow is from top to bottom and the horizontal lines on the photograph indicate the con-
nection between the divergent section and the expansion (enhanced online). [URL: http://dx.doi.org/10.1063/1.4833436.1]

resonance imaging, Mullin et al.17 found a sharp onset of asymmetry in the downstream flow at
Re = 1140. Recently, numerical simulations18, 19 confirmed the previous experimental results and
showed that the flow is unstable to infinitesimal perturbation for Re = 3273. The exact nature of the
first instability is unclear since imperfections are likely to produce disturbance that can grow and
lead to multiple solutions both stationary and time-dependent.

The stability of the axisymmetric slowly diverging pipe flow has been investigated in a numerical
work20 solving a multigrid Poisson equation for the base flow and partial differential equations for
the flow stability in a diverging pipe (α = 1.5◦, L/d = 120, and D/d ≈ 7.3), and indicate that the
flow is linearly unstable from Re = 150. In another numerical simulation21 it is found that the flow
separation occurs for Re less than about 2000. The purpose of the present experimental study is to
add new quantitative data in order to clarify these findings.

A number of investigations in straight pipes with a axisymmetric constriction have been carried
out numerically22 and in experiments23, 24 as an idealization of a stenosed artery. In this situation,
the velocity profile at the inlet of the divergent section is almost flat, the flow in this divergent pipe
(α ≈ 45◦, L ≈ D, and D/d = 2) exhibits a laminar recirculation region, and the subcritical transition
to turbulence22 occurs at Re = 361.

The remaining part of this paper presents the experimental apparatus. The results of two-
dimensional simulations, as well as an investigation of the stability of the recirculation cells,
are given in the following paragraphs. Later, the dynamics of the turbulent patches is described
and these are tested via a series of relaminarization experiments. Conclusions are drawn in the
end.

The experiments consist of flow visualization in slowly diverging axisymmetric pipes. A
schematic of the experimental setup is given in Figure 1(b). It is composed of a vertical pipe
made of acrylic. The flow is controlled using a syringe pump (TSE Systems Model 540230) together
with 100 ml glass syringes. The device pulls the fluid at a constant mass flux along the pipe. Hence,
even if the motion becomes turbulent, the mass flux through the pipe is unaffected so that Re remains
constant. The maximum pulling velocity corresponded to Re = 4000.

http://dx.doi.org/10.1063/1.4833436.1
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The slowly diverging acrylic pipe used here has half-angle, α, of 2 ◦ (or π /90 rad) over a length
L = 128.88d = 275.8 mm. The inlet diameter was d = 2.14 ± 0.1 mm, the outlet diameter was
D = 18.8 ± 0.1 mm, and there was an imperfection due to the fitting of the outlet section. Downstream
of the divergent section, a straight pipe section extended for 320d.

The inlet has a straight section of diameter d over 10d in order to obtain a fully developed
Poiseuille flow. The development is facilitated by a smooth contraction between the inlet and the
reservoir. For flow visualization, 4 ml of Kalliroscope, a suspension of reflective flakes, was added
to two liters of degassed water. A vertical light sheet was formed in the center plane of the flow, and
a camera was used to record the dynamics of the flow. An example of the flow visualization is shown
in Figure 1(c). The Reynolds number is defined by Re = Ud/ν, where U is the mean flow rate and ν

is the kinematic viscosity. The temperature of the fluid is taken into account in the calculation of Re.
The other parameters of the diverging pipe are the expansion ratio, E = D/d, between the outlet and
inlet diameters and the non-dimensional length of the diverging section: β = L/d. For the 2◦ pipe,
(E, β) = (8.79, 128.88).

The base flow in slowly diverging pipes is a parabolic velocity profile and the axial velocity on
the centerline decreases along the divergent axes. As the flow rate increases or as the diverging angle
increases, a recirculation cell is observed close to the walls and its extent depends on Re. In practice,
the cell is thin and difficult to measure because of the azimuthal curvature of the outer walls. An
example of time-exposure photography is presented in Figure 2(a). The fluid particle paths around
the centerline appear as continuous lines, whereas fluid particle paths close to the walls appear as
dotted lines indicating that they move at a much slower pace.

The axisymmetric flow is reproduced in numerical simulations of time-dependent Navier-Stokes
equations using a two dimensional axisymmetric finite element code (COMSOL Multiphysics). At
the inlet, the velocity profile is parabolic over 10d. In the downstream section, the mesh consists of
several blocks and is sufficiently long, typically 100d, so that Poiseuille flow is recovered. The outlet
boundary condition is constant pressure. The number of elements along the divergent section and
the outlet section depends on α and E and is around one million. The numerical simulations indicate
that the recirculation appears at a finite Re in the corner between the divergent section and the outlet
section. As the flow rate increases, the recirculation cell grows both upstream and downstream. The

FIG. 2. Laminar flow in a slowly divergent pipe. (a) Time-exposure photograph for Re = 200. (b) Numerical simulations of
velocity streamlines for Re = 600. (c) Onset of axisymmetric recirculation cell as predicted from numerical simulations in
terms of sin α as a function of Re. The points represent the critical Re of transition to turbulence for the current and previous
studies.17, 20, 22, 24 (d) Numerical predictions of the separation length, Lsep, versus Re for different α.
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calculated streamlines as well as axial velocity magnitude are given in Figure 2(b). The flow can be
described as a confined jet which expands downstream and the recirculation cell is long and thin.
Notice that the velocity profile exhibits a flow reversal containing inflection points which can lead
to Kelvin-Helmholtz instability.

The onset for the growth of the recirculation cells can be tracked using numerical simulations
for a range of α, β, and E. For α ≈ 20 up to 90◦ (sin α ≈ 0.34 up to 1), the recirculation cell is
always present. As α decreases, there is a critical Re for the onset of the recirculation cell which
grows rapidly as shown in Figure 2(c). Eventually, when α tends to zero, the critical Re becomes
large as suggested by linear stability calculations of circular pipe flow of constant diameter.25 The
threshold for the appearance of the recirculation cell is compared to data points for transition to
turbulence from the literature.17, 20, 22, 24 Calculations were performed changing α (or β) keeping E
constant from 2 to 10 and the critical Re for the onset of recirculation cell varies by less than 5%.

In the regions around the outlet of the divergent section, the pressure close to the wall and the
deceleration of the fluid particle lead to the onset of the recirculation cell. Once the cell appears, it
grows linearly with Re. In Figure 2(d), the axial length of the recirculation bubble, Lsep, called the
separation length, deduced from the positions of zero wall shear stress calculations is presented as
a function of Re for different α. Our numerical simulation for α = 85◦ agree quantitatively with
the experiments of Latornell and Pollard16 on sudden expansion (Lsep = 0.096Re) and previous
numerical works.18, 23

In the case of abrupt expansions in two-dimensional channels, several authors refer to the
“Coanda” effect3, 12 when the initial symmetric flow becomes asymmetric. Specifically, one of the
recirculating cells becomes larger and a new time-independent flow is observed. This sequence of
events leads to the breaking of the symmetry of the flow in agreement with the ideas of bifurcation
theory. In the present case of axisymmetric flow there is a single recirculation cell in contrast with the
two-dimensional channels where there is one cell behind each step. Sanmiguel-Rojas and Mullin19

showed using three-dimensional numerical simulations that the axisymmetric state is sensitive to
small imperfections. Depending on the amplitude of a small distortion added to the parabolic inlet
flow, the flow change to asymmetric or disordered time-dependent state. Our numerical simulations
are two-dimensional axisymmetric. In the experiments, the time-independent asymmetric states were
not clearly observed because of azimuthal curvature of the outer walls (see Figure 2(a)). At higher
Re, the cell is found to be sensitive to natural disturbances of the system. These imperfections are
related to a distortion parameter in a complicated manner and are the source instabilities which lead
to the formation of super-critical turbulent patches.

With a further increase of the flow rate, the recirculating bubble breaks down into localized
turbulent patches as the one depicted in Figure 1(c). These localized turbulent patches have some
similarities with the so-called localized puffs observed in cylindrical straight pipe flow.27 Puffs seem
to have a definite length for a given Re, an active core of high turbulence intensity and a decaying
wave at the front. In the diverging pipe outlet section, turbulent patches appear in the divergent
section and extend over many diameters. There, the downstream Reynolds number, based on the
outlet diameter, is too small to sustain turbulence and decaying turbulence is observed. Contrary
to puffs, the turbulent patch does not travel along the pipe. Their origin is the breakdown of the
recirculation cell. However, they do have a definite length for a given Re, an active core of high
turbulence intensity and a decaying wave at the front.

In Figure 3, space-time diagrams of laminar flow (Figure 3(a)) and turbulent patches
(Figures 3(b) and 3(c)) are produced by converting the brightness of the flow visualization pho-
tographs along the flow axis and stacking the different lines corresponding to different times.
x/d = 0 represents the inlet of the divergent section. The dimensionless time, t, used here is defined
as t = ft* where f is the image acquisition frequency (20 Hz) and t* is the time (in seconds). In
Figure 3(b), the puff is represented by fluctuating dark areas in the middle of the diagrams: 60 < x/d
< 100. The comparison of the diagrams for Re = 800 (Figure 3(b)) and Re = 2400 (Figure 3(c))
suggests that the length of the turbulent patch increases. In Figure 3(b), the clear streaks beyond
x/d = 90 indicate that constant bright regions are moving at constant velocity. The velocity is given
by the slope of the streak. The appearance of the constant brightness streaks is used to detect the
decaying wave and the leading edge of the turbulent patches. More information about the relation
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FIG. 3. Photographs of the flow and space-time diagrams for different Re. The photographs are on top of the diagrams,
which are based on the brightness along the flow axis. (a) Laminar flow at Re = 300, (b) localized turbulent patch at
Re = 800, and (c) turbulent patch at Re = 2400.

between reflected light intensity and velocity field can be obtained from Abcha et al.26 Figure 4(a)
presents the positions of the leading and trailing edges of the turbulent patch as a function of Re.
The error bars represent the fluctuation of the positions of the leading and trailing edges. The trailing
edge is sharper than the leading edge (see Figures 4(b)–4(d)). The boundary between the decaying
wave and the laminar flow is tenuous as in the case of puffs.27 As Re increases, the extend of the
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FIG. 4. Length of the turbulent patch in the slowly diverging pipe. (a) Position of the leading and trailing edges of the
turbulent patch as a function of Re. The dashed line represents the end of the diverging section at β = x/d = 128.88.
(b) Flow visualization of a turbulent patch at Re = 1000, (c) flow visualization of a turbulent patch at Re = 3000 in the
divergent section, and (d) its decaying front wave in the outlet section.
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FIG. 5. Relaminarization experiments. (a) Space-time diagram of a relaminarization experiment from a localized turbulent
patch: Re0 = 800 to Re = 400, the black line represents the moment of the reduction of Re and the dashed white line the
estimated relaminarization time when no disordered motion is observed. (b) Relaminarization time, tR, versus Re.

turbulent patch increases. The position of the trailing edge asymptotes towards a positive value as the
turbulent patch cannot propagate beyond the inlet of the divergent section. For large Re the position
of the leading edge continues to increase. The results of Figure 4 are reminiscent of Wygnanski and
Champagne27 measurements describing the growth of turbulent puffs in uniform pipes suggesting
that the turbulent patches observed here may contain solutions similar to those observed in pipe
flow.

It is expected that the position of the leading edge will increase as Re increases. Eventually as the
turbulent patch grows, a puff-slug transition27, 28 is likely to take place where the stationary turbulent
patch will split. This process is found to be vortex shedding via a Kelvin-Helmholtz mechanism
from wall-attached shear layers.

Further increase of Re means a fully developed turbulent flow field. There are many reports on
turbulent flow properties in rectangular diffusers suggesting that the manipulation of the recirculation
can lead to changes in the conversion of mean-flow kinetic energy to pressure.29, 30 A recent review
on turbulent flow in diffusers and direct numerical simulation of the turbulence statistics and coherent
structures can be found in the paper by Lee et al.31

In order to quantify further the turbulent patch regime, relaminarization experiments32 were
performed where turbulent patches are generated and its decay is observed back to laminar as Re
was reduced. During the decay of the turbulent patch, a laminar liquid jet going through the turbulent
patch sets in quickly and induces the recirculation flow close to the wall. Wavy patterns are observed.
The liquid jet seems to fold like a viscous thread. Similar oscillations of the liquid jet in a divergent
section were also observed in microfluidic experiments.33

Our strategy was to generate a turbulent puff at Re0 = 800. This turbulent patch was stable
(see Figure 3(b)) and is considered as a natural state or attractor of the system. The reduction in
Re was almost instantly and achieved by reducing the syringe pump velocity. The relaminarization
was monitored through spatio-temporal diagrams. A typical example is presented in Figure 5(a).
The decay time was estimated from the moment of the reduction in Re (t = 0) to the time where
no disordered motion is observed within the translating disordered patch (t = tR). In the example
presented in Figure 5(a), t = 0 and t = tR are represented as continuous and dashed lines, respectively.
The oblique streaks are related to the translation velocity along the pipe axis. The time for the
disordered patch to decay, tR, was extracted from the diagrams and are shown in Figure 5(b). The
straight line is a linear fit of tR indicating that the lifetime of the turbulent patch increases linearly
with Re. A divergence of timescales is expected close to transition points.32 Our experimental setup
is limited to a moderate range of tR. The data suggest that a critical point for sustained localized
turbulence may be found at Re between 600 and 800 and is reported in Figure 2(c).

This work presented a study about the flow in slowly diverging pipe. At low flow rate, no
recirculation bubble is observed. For larger flow rate, stable laminar recirculation bubble is observed
and extends downstream. The results of our computation predict the onset of the recirculation and
the extent of the recirculation bubble for a range of parameters.
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With further increase of the flow rate, a domain of unstable turbulent patches is uncovered. The
extent of the turbulent patch is reported. A future direction of our research will be to investigate the
statistical properties of this localized turbulence and the puff-slug transition as the turbulent puff
here does not travel along the pipe.
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