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Abstract. Results are reported on a combined experimental and numerical investigation of a free surface
flow at small Reynolds numbers. The flow is driven by the rotation of the inner of two horizontal concentric
cylinders, with an inner to outer radius ratio of 0.43. The outer cylinder is stationary. The annular gap
is partially filled, from 0.5 to 0.95 full, with a viscous liquid leaving a free surface. When the fraction of
the annular volume filled by liquid is 0.5, a thin liquid film covers the rotating inner cylinder and reenters
the liquid pool. For relatively low rotation speeds, the evolution of the film thickness is consistent with
the theory for a plate being withdrawn from an infinite liquid pool. The overall liquid flow pattern at this
condition consists of two counter-rotating cells: one is around the inner cylinder and the other with weaker
circulation rate is in the bottom part of the annulus and nearly symmetric about the vertical axis. With
increasing rotation rate, the free surface becomes more deformed, and the dynamics of the stagnation line
and the cusp line dividing the cells are tracked as quantitative measures of the interface shape. In addition,
the recirculating flow cells lose symmetry and the cusp deforms the free surface severely. A comparison of
numerically computed flow which describes the interface by a phase-field method confirms the dynamics
of the two cells and the interface deformation. For filling fraction 0.75, the liquid level is slightly above the
inner cylinder and a significant decrease in size of the bottom cell with increasing rotation rate is found.
For filling fractions approaching unity, the liquid flow consists of one single cell and the surface deformation
remains small.

1 Introduction

The flow of viscous liquids with free surfaces is funda-
mental in many situations, ranging from surface coating
to geophysical flows. Such flows often exhibit interesting
phenomena. One example is liquid flow in a partially filled
horizontal cylinder, with flow driven by rotating the cylin-
der about its axis. For this geometry surprising flow pat-
terns due to secondary flows driven by the dragging of
a liquid film have been described [1]; later works showed
that different flow patterns may arise [2,3]. A related con-
figuration, in which is found a ribbing or printer’s insta-
bility, is obtained when the gap between two concentric
cylinders is slightly filled with liquid. For small but finite
velocities, the flow structure in this geometry may show a
complicated set of stagnation lines as well as elliptic and
hyperbolic stagnation points between the cylinders. This
flow exhibits “nested separatrices” and the structure ob-
served is sensitive to the radius ratio and the speed ratio
of the cylinders [4]. The topology of these streamlines and
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their bifurcations can be understood in the framework of
dynamical system theory [5], although experimental com-
parisons are challenging.

In the present investigation, we consider the flow of
a viscous liquid in a partially filled annulus between two
horizontal concentric cylinders. Flow is driven by rotation
of the inner cylinder. The behavior of the free surface and
its relation to the subsurface dynamics are studied. While
aspects of this problem have been investigated numeri-
cally, there remains a lack of quantitative data, particu-
larly on the free surface morphology, which will be shown
to exhibit both large-scale surface deformation and cusp
formation.

Analysis of the flow we consider is rather limited. How-
ever, the Stokes flow in a half-filled annulus between rotat-
ing coaxial cylinders was computed by [6]. This work dif-
fers from the present study in considering both cylinders
to be rotating, which renders direct comparison impossi-
ble given our experimental constraints. The liquid in the
calculation noted is confined to the bottom of the annu-
lus, i.e. the flow is sufficiently slow that gravity dominates
and the interface is flat. Surface tension thus never plays a
role. In addition, these authors assumed that i) the thick-
nesses of the films which develop along the surface of the
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cylinders are vanishingly small; and, ii) the free surface
remains undeformed everywhere except within the imme-
diate neighborhood of the cylinders. While there can be
no direct comparison, it is useful to note that under these
conditions, for certain parameter ranges they found the
flow to consist of two large cells or eddies: one below but
connected to the inner cylinder, and the other in the bot-
tom part of the annulus. Depending on the radius ratio
and the speed ratio between the cylinders, the circulations
have a potentially rich substructure with separatrices and
sub-eddies [4], and it has been noted that the realizability
of such flows computed assuming a flat interface depends
upon the actual shape of the boundary (i.e. the interface).

It is the purpose of the present work to determine this
interface shape and the sub-surface flow, both experimen-
tally and numerically, for the arrangement described in [6]
but with only the inner cylinder rotating. We outline the
main results, as the interface shape and its underlying ba-
sis in wetting of the driving boundary lead to a flow quite
different than one might deduce for a flat interface and
no liquid film over the cylinder. We consider a range of
fill fractions with F ≥ 0.5, as well as for a range of capil-
lary numbers, 0 < Ca ≤ 20, where Ca = μU/σ; μ is the
dynamic viscosity of the liquid, U is the surface velocity
of the inner rotating cylinder, and σ is the coefficient of
surface tension. These conditions include cases in which
the free surface is nearly flat at small Ca up to highly de-
formed at large Ca. While the capillary number is a ratio
of interfacial to viscous forces, we note that the large scale
flow is determined primarily by a balance of viscous and
gravity forces. At small Ca in a half-filled annulus the flow
consists of two cells, delineated by a separatrix. One cell
orbits the rotating cylinder: it is this feature which clearly
differentiates the actual physical flow from the mathemat-
ical analysis of [4] and [6].

The structure of the flow implies the need for a stag-
nation line and a cusp line [7] at the free surface. The cusp
line eventually deforms the free surface rather extremely
as Ca grows, with the radius of curvature expected [8]
to be proportional to exp(−βCa) once Ca � 1, where β
is a contant. At sufficiently large rotation rate, i.e. large
Ca, the cusp becomes unstable [9] and air entrainment is
observed [10].

Motivation for study of this annular free surface flow
arises from phenomena first seen in its application in biore-
actors. In this application, a suspension of biological cells
is made and fills the annular region, with the flow driven
by rotation of the inner cylinder both maintaining cell
suspension and enhancing mass transfer of oxygen from
the free surface into the bulk. In addition, however, it
was observed that the cells formed bands of high and low
concentration alternating along the axis of the cylinder,
and this has been followed by a number of studies of sim-
pler rigid-particle suspensions [11] and the related flow
in a single partially filled cylinder [12–16]. In these stud-
ies, the concentration of solids is found to vary axially
in alternating bands, with solid fraction even approach-
ing zero in some cases, for F = 0.5–0.95 [11, 17]. For the
single-cylinder flow, an explanation for the banding pro-

cess that occurs within a partially filled horizontal rotating
cylinder has been proposed [18] based on a lubrication ap-
proximation for the flow [19] applied in an analysis for a
suspension having a particle-concentration–dependent ef-
fective viscosity. The banding instability in the partially
filled Couette has been suggested to be mechanistically re-
lated to differential drainage rates between particles and
fluid [20], and these ideas have been developed into a
predictive model [17]. Such analysis has been hampered,
because the flow complexity within this geometry does
not allow for effective analytical treatments of the global
flow. To allow further progress in understanding such flows
in application and analysis of multiphase phenomena, we
consider the flow with the partially filled Couette in detail.

As this flow is rather complex, it is of interest to de-
velop understanding using numerical tools in combination
with experiments. We apply a phase-field model, a diffuse-
interface approach, in order to compute the flow over a
wide range of conditions and compare against the exper-
iments. We begin in sect. 2 with a description of the ex-
perimental setup. The numerical method is presented in
sect. 3. A comparison between experimental and numeri-
cal results is provided in sect. 4.

2 Experimental setup

Experiments were performed within concentric cylinders
shown schematically in fig. 1(a). The outer cylinder is a
transparent tube made of acrylic and the interior cylin-
der is stainless steel. The annulus is closed at each end
by acrylic caps into which a sealed bearing is mounted,
allowing the inner cylinder to turn while the caps and the
outer cylinder are stationary. The device is mounted hori-
zontally, its length is L = 304±0.1 mm and measurements
are performed at L/2 from the caps (i.e., at the middle).
Specifically, high resolution images of liquid levels and film
thickness at different rotation speeds were compared and
sized using image processing softwares (MATLAB and Im-
ageJ). Several calibrations were performed and all the data
are reported with their associated error bars.

Figure 1(b) shows a sketch of the cross-sectional view
of the setup where Ri = 9.5 ± 0.1 mm and Ro = 22 ±
0.2 mm. The gap width is d = Ro−Ri = 12.5 mm, and the
radius ratio is Ri/Ro = 0.43, which is normally termed a
wide-gap Couette geometry. The cylinder motion is motor-
driven (Dayton; model 1L497) and the angular velocity of
the inner cylinder can be varied from ω � 1 to 42 rpm, so
U = 2πωRi � 1 to 42 mm/s. Figure 1(b) sketches a cross-
sectional view of the liquid film around the inner cylinder.
Once the inner cylinder rotates, it drags out a liquid film
on one side, and this film then reenters the liquid pool in
the annulus on the other side.

The liquid used in the experiments is lubricant UCON
75-H-90,000 (Dow Chemical) of density 1092 kg/m3 and
surface tension 35–40 mN/m at 20◦C. This lubricant is sta-
ble, noncorrosive, water soluble and its contact angle with
acrylic in air is 70–90 degrees. The dynamic viscosity of
the liquid was determined from shear ramps of increasing
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Fig. 1. (Color online) Schematic of the experimental setup. (a) Horizontal concentric cylinders, drawn to scale. (b) Cross-
sectional view: a liquid film is coating the inner cylinder. The lighter color represents the liquid in a 50% full annulus, the darker
color represents the case of 75% full annulus, both under flow; the dashed horizontal lines represent the levels for 50%, 75% and
90% filling levels (from bottom to top) in the absence of flow.

and decreasing shear rate using a cone-and-plane geome-
try in a rheometer (TA Instruments). The viscosity is sen-
sitive to temperature, so the room temperature variations
are taken into account. The viscosity, μ, in the range 15
to 35◦C, can be represented by μ (T ) = A exp (−E/RT ),
with A = 94.35 Pa s and E = 0.95 J mol−1; here T is in
Kelvin, and R = 8.314 J K−1 mol−1 is the gas constant.

We identify five dimensionless parameters describing
the flow: a) the Reynolds number which is defined as Re =
URi/ν = 2πωR2

i /ν; b) the ratio of the inner to outer
radius of the annulus; c) the Bond number Bo = ρgR2

i /σ;
d) the fill fraction F , i.e. ratio between the liquid volume
and the annular gap volume between the two cylinders;
and e) Ca as defined above. Since Re = URi/ν = O(10−3–
0.1), inertia may safely be neglected. Indeed, in a similar
configuration at filling fraction 0.66 and a thin gap width
with radius ratio 0.882, the authors of [21] found that the
flow is unstable to inclined traveling rolls from Re ≈ 250.

With Re essentially zero, a fixed radius ratio (0.43),
and constant Bo (28), the independently variable param-
eters are reduced to two, namely F and Ca. We note that
an alternative way of expressing the dimensionless param-
eters would be to take the ratio between viscous and gravi-
tational forces (which is physically related to the drainage
from the cylinder) defined as α2 = ων/gRi, where g is
the gravitational acceleration. As an alternative, one may
use α2 = 0.032 Ca for the work described here, and thus
α2 = O(0.001–1). We prefer to use the ratio between vis-
cosity and capillary forces captured in Ca, as the free sur-
face here exhibits a cusp. One may view Ca as a con-
venient nondimensionalization of U on large scales, while
retaining the interpretation as a viscous-capillary balance
at small feature scales.

3 Numerical formulation

This flow is modeled as axially invariant, and thus we re-
duce to a two-dimensional calculation on a cross-section.
We compute the flow based on the Navier-Stokes equa-
tions including a surface tension term

∇ · u = 0, (1)

ρ
∂u
∂t

+ ρu · ∇u = −∇p + μ∇ · D + ρg + G∇φ, (2)

where u is the velocity, D is the strain rate tensor: D =
∇u + (∇u)T , ρ is the fluid density, t is time, p is the
pressure, g is the gravity, and the last term of eq. (2)
represents the surface tension force with G the chemical
potential (J/m3) and φ the phase-field variable. We note
that −1 ≤ φ ≤ 1.

The surface tension is obtained from the Cahn-Hilliard
equation, which is given by

∂φ

∂t
+ u · ∇φ = ∇ · γλ

ε2
∇ψ, (3)

where ψ is an auxiliary variable satisfying

ψ = −∇ · ε2∇φ +
(
φ2 − 1

)
φ +

ε2

λ

∂f

∂φ
, (4)

where f is the free energy, γ is a mobility with a fixed
value for our work (γ = 10 m3 s/kg), λ is the mixing en-
ergy density, and ε is the interface thickness scale. Note
that ε = 10−4 m is also constant. It is assumed that the
diffuse interface is at equilibrium and thus ∂f/∂φ = 0.
There is a relation [22] between λ, ε and the surface ten-
sion coefficient such that σ ∝ λ/ε, and the chemical po-
tential is defined as G = λψ/ε2. While boundary element
approaches [7, 23–25] are likely to be able to more accu-
rately resolve the detailed structure near the cusp because
it reduces the dimensionality of the calculation (here, to
the surface contour), this requires an additional step in
determining the flow field. For the determination of flow
field structure of interest here, the diffuse-interface ap-
proach on a spatially variable-mesh density is an efficient
and satisfactory method.

We simulate the evolution of u and φ in time us-
ing a finite element solver (COMSOL Multiphysics). The
geometry described in sect. 2 is implemented in a two-
dimensional cylindrical coordinate system. Equations (1)–
(4) combined with the no-slip boundary condition at the
outer cylinder and oil initially wetting the inner rotating
cylinder are solved for small Re. The finite element solver
also allows for calculations with a level-set method. How-
ever the phase-field method was chosen because it can be
constructed by physical arguments and is often used to
model viscous flows. In the calculation results presented
here, all input parameters equal to the parameters stated
in the experimental section, with the upper fluid being air
with viscosity 1.73 × 10−5 Pa s.
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The contact angle between the oil and the outer wall
can be varied as a boundary condition. This influences the
shape of the interface close to the outer wall, the stagna-
tion point position and the cusp position. In the results
presented here the contact angle is fixed to 90 degrees.
The calculations are unsteady. In any calculation reported,
after sufficient time steps a steady solution is observed
and the asymptotically steady solution is presented here.
The total number of elements of the two-dimensional mesh
varies with F and is over 40 000 elements. As noted, the
mesh density is also spatially variable within a calculation,
and a very fine mesh is used along the interface, particu-
larly near the cusp, as well as along the inner and outer
surfaces.

4 Results and discussion

We first describe the experimental measurements and the
calculations as a function of Ca for the half-full case, i.e.
F = 0.5. We present results for the film thickness, cusp
angle and stagnation line radial position. From these mea-
surements, the shape of the free surface is reconstructed,
and its deformation is compared to numerical calculations.
For F = 0.75, the comparison between experiments and
calculations is presented. The results for F = 0.9 indicate
the presence of a single flow cell.

4.1 Half-full case: F = 0.5

4.1.1 Film thickness

Each experiment began with the apparatus carefully po-
sitioned with axis horizontal, and the annulus was filled
to the desired fill level with the viscous liquid. The inner
cylinder rotation was then started at the desired rate. As
noted, this cylinder motion drags a film over the cylinder
and into the liquid pool. Hence, the flow consists of two
cells, each extending the full range of possible wetted an-
gles around the cylinder. A drawing of a cross-sectional
view of the flow pattern is provided in the inset of fig. 2.

Turning to quantitative results, we first consider the
film thickness over the inner cylinder, h. As the rota-
tion rate increases, the film thickness increases and the
reduction in liquid level downstream, denoted H, also
grows as indicated in fig. 2. The error bars represent the
spread around an average, taken from two to four mea-
surements. Note that the measured h is roughly propor-
tional to Ca0.46 which is consistent with the theoretical
scaling of h ∼ Ca0.5 for the thickness of a liquid film
on a vertical flat plate being pulled from an infinite bath
for Ca � 1 [26–28]. Interestingly, the downstream sur-
face level reduction, H, evolves similarly to h for small
rotation rates, but appears to saturate within error bar
while h continues to grow; specifically, for Ca � 4, H
tends toward a constant value. The saturation before in-
terface breakup may be due to three-dimensional effects
or transversal flow [29]. The scatter on the measured H is

Fig. 2. (Color online) Film thickness, h, and downstream sur-
face level reduction, H, as a function of Ca for the half-full ap-
paratus. The continuous lines represent H = 0.51 Ca0.56 and
h = 0.13 Ca0.46 (H and h are expressed in cm). The dashed
lines represent the numerical results. The inset sketches the
cross-section flow pattern as well as h, H, the stagnation point
(red dot) and the cusp.

Fig. 3. (Color online) Angle of the cusp tip, θ, as a function of
Ca for the half-full apparatus. The continuous line represents
a linear fit: θ ∝ Ca. The dashed line represents the numerical
results. The inset sketches the cross-section flow pattern as well
as θ and the stagnation point (red dot).
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Fig. 4. (Color online) Time lapse photographs of the cross-section in the rising side of the rotating cylinder: (a) Ca = 0.4,
(b) Ca = 1.7, and (c) Ca = 3.5 for F = 0.5. The white arrow indicates the position of the stagnation line. The dashed white
line on the left of each photograph indicates the outer wall position and the right side of each picture is in the vertical plane
passing through the rotating axis of the inner cylinder, which is rotating in the clockwise direction. (d) Radial position from
the cylinders axis of the stagnation line as a function of Ca. The continuous line represents a linear fit: 2.4 Ca + 9.6 (expressed
in mm), with the inner cylinder radius: Ri = 9.6 mm. The dashed line represents a fit of the numerical results.

large because of complications associated with the dynam-
ics of the contact line at the outer cylinder surface. The
predictions from the numerical solution are also shown in
fig. 2, and are in good agreement with the measurements
for h, in fact lying within the experimental error. The pre-
dicted H underestimates the measurements.

4.1.2 Cusp angle

On the downstream side of the rotating cylinder, a vis-
cous cusp is formed as in related experiments by [7,8,30].
Whereas these previous studies consider a large pool, here
the confinement or the radius ratio affects the cusp tip po-
sition. For sufficiently high Ca, the angular position of the
cusp tip relative to the original flat interface, θ, was deter-
mined, as sketched in the inset in fig. 3. The evolution is
roughly linear for Ca < 4, but reaches a limiting value of
θ = 86 ± 4◦. In the range Ca ≤ 4, the experimental data
can be described with a linear fit, θ = 17.4 Ca+7.4. Note
that the fit does not predict zero for the origin because
the detection of a cusp at low Ca is not straightforward,

but we note the slope is somewhat larger for Ca < 1. The
evolution of the tip radius has been described in related
configurations [8, 30] and it has been found that the ra-
dius of curvature, r, is proportional to exp(−βCa) when
Ca � 1. As expected the numerical data predict an expo-
nential decrease (r = 2.78 exp(−0.28Ca)) of the radius of
curvature of the cusp as a function of Ca for 1 ≤ Ca ≤ 6.

The calculations results for the tip angle are also re-
ported in fig. 3. Again the model is in qualitative agree-
ment with the experiments, but underestimates θ. The
simulation does not recover the saturation region; this
could be due to three-dimensional effects not captured in
the calculations.

The cusp is asymmetric, as the velocity in the cell ad-
jacent to the inner cylinder is about one order of magni-
tude larger than that in the outer recirculation cell. The
calculations predict the interface breakup and air entrain-
ment at the cusp for Cac � 6 whereas it is Cac � 8 in
the present experiment. This critical velocity or Cac is in
agreement with previous measurements [30] where a scal-
ing of Cac as a function of the viscosity ratio of the two
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(a) (b) (c)
Fig. 5. (Color online) (a) Reconstruction of the free surface at F = 0.5 in the absence of flow (light blue filled region), Ca = 1
(dashed green line), Ca = 3 (dashed-dotted yellow line), and Ca = 6 (dashed-dotted-dotted red line). The stagnation line
positions are represented by filled dots. (b) and (c) Numerical simulation of the flow for Ca = 0.9 and 3.7, respectively. The
white lines are velocity streamlines.

Fig. 6. (Color online) Downstream surface level reduction, H,
as a function of Ca for F = 0.75. The line represents H =
0.56 Ca0.54 (expressed in cm). The dashed line represents a fit
of the numerical results. The inset sketches the cross-section
flow pattern as well as H and the stagnation point (red dot).

fluids is observed in agreement with an exponent of −4/3
proposed by Eggers [31].

4.1.3 Stagnation line position

Between the two large cells on the rising side of the in-
ner cylinder, there is a stagnation line on the free surface
where close streamlines separate. Using time lapse photog-
raphy and a dilute seeding with 50 μm diameter polyamide

particles (from Dantec), the cells can be observed, as de-
picted in the photographs of fig. 4. A laser sheet is gener-
ated perpendicular to the cylinder axis and photographs
are taken at an angle of 30◦ from the horizontal. Quan-
titative positions of the stagnation line are extracted by
comparison with the initial static liquid level. The radial
position of the stagnation line increases linearly with Ca
as indicated in fig. 4(d). Note that for small Ca, the stag-
nation line is on the surface rising over the inner cylinder.
As Ca increases, the stagnation line moves along the free
surface towards the outer wall, while there is a rise and
change in curvature of the free surface. As the stagnation
line closely approaches the stationary wall, the secondary
cell weakens and we are unable to resolve it on the rising
side of the rotating cylinder for Ca > 3.5. The calculations
of the flow reproduce the linear evolution of the stagna-
tion line position within experimental error. We could not
experimentally access the limit Ca → 0, but in this limit
(obtained by taking U → 0) the stagnation point is ex-
pected to asymptotically approach the inner cylinder sur-
face as the film thickness tends to zero; the linear fit of the
stagnation point radial position, 2.4 Ca + 9.6 (expressed
in mm), with the inner cylinder radius Ri = 9.6 mm, is in
good agreement with this expectation.

The finding that the cusp angle, θ, and the surface
level reduction, H, both approach limiting values for Ca >
4 suggests there is a roughly fixed flow structure, with
the position of the secondary cell underneath the rotating
cylinder and the primarily cell varying little as the rate
increases. However, h continues to grow with increasing
rotation rate.

The numerically computed flow is quantitatively in
agreement in terms of the position of the stagnation line
and h. The evolution of H and θ as a function of Ca is only
qualitatively predicted. A number of runs have been car-
ried out varying the contact angle at the outer wall from
30 to 150 degrees and small changes on the film thicknesses
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Fig. 7. (Color online) (a) Reconstruction of the F = 0.75 free surface for no flow (light blue filled region), Ca = 1 (dashed
green line), Ca = 3 (dashed-dotted yellow line), and Ca = 6 (dashed-dotted-dotted red line). The stagnation lines positions are
represented by filled dots. Note that there is no dot on the upper left side for Ca = 6. Numerical calculations for (b) Ca = 0.1
and (c) Ca = 3.7 where the secondary cell is confined to the right corner. The white lines are velocity streamlines.

and the positions of the cusp were observed. The main ef-
fect of the contact angle is the curvature of the interface
close to the outer wall. So our present understanding is
that the contact angle is not the only responsible for the
discrepancy between experiments and numerical results.

4.1.4 Free surface morphology

From the experimental measurements of film thickness,
downstream surface level reduction, cusp angle, and the
radial position of the stagnation line, we reconstruct the
free surface. We assume that the contact line on the rising
side is pinned at the wall because observations indicate it
does not change with Ca. Figure 5(a) presents a recon-
struction of the free surface for F = 0.5. Note that the
surface on the downstream side of the inner cylinder is
dropped in elevation compared to the initial condition by
H, providing the liquid volume associated with the film
and the free surface rise around the stagnation line region.
The output of the numerical simulation is also displayed in
fig. 5(b) and (c), with results at Ca = 0.9 and 3.7, respec-
tively. The free surface as well as numerical streamlines
for the bottom fluids are also reported. As Ca increases,
the two cells become more asymmetric about the vertical
centerline. The upper cell in which the flow orbits the in-
ner cylinder grows, as does the film which forms a part of
this cell.

4.2 3/4 full case: F = 0.75

4.2.1 Film thickness

When the annulus is 3/4 full, the film thickness, h, has a
finite value of approximately 1 mm at Ca = 0 (no flow)
and increases with Ca. The variation of h is represented

by h ∝ Ca0.5 in the range 2 < Ca < 5. Meanwhile, the re-
duction in liquid level downstream surface level, H, again
varies roughly as Ca0.5 in the range 2 < Ca < 5 as de-
picted in fig. 6.

4.2.2 Free surface morphology

For F = 0.75, the reconstruction of the free surface from
measurements is depicted on fig. 7(a). As explained earlier,
the stagnation line moves toward the stationary wall as Ca
increases. From the numerical calculations, we find that
for small Ca, there are two counter-rotating cells and the
stagnation line moves along the free surface toward the
outer wall with increasing Ca. The cusp penetration depth
is only a few millimeters below the level of the annular pool
surface, i.e. the surface defining H. Moreover, the cusp
does not go unstable to breakup even for large rotation
speed corresponding to Ca = 20.

Figures 7(b) and (c) present the results of calculations
for Ca = 0.1 and 3.7, respectively. For small Ca, the flow
pattern consists of two cells almost symmetric with respect
to the vertical axis. As Ca increases, the bottom cell re-
duces in size and at large Ca, the outer cell gets confined
on the cusp side along the outer cylinder. As Ca increases,
the cell reduces in size and eventually disappears.

4.3 Effect of the filling ratio, F

Experiments were conducted for F = 0.9. Only a single
cell around the inner cylinder is observed for this large
fill fraction. There is apparently a continuous transition
in the flow structure between F = 0.75 (where two cells
appear at small Ca) and F = 0.90 with its single cell. Note
that this behavior is specific to the experimental geometry
studied here, with Ri/Ro = 0.43.
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Ca = 0.5
Ca = 1
Ca = 2

Fig. 8. (Color online) Numerical calculations for F = 0.90
and Ca = 0.5, 1 and 2. The thick lines represent the interfaces
and the thin lines represent velocity streamline in the viscous
liquid for the case Ca = 2, which evidence only a single cell.

In fig. 8, results of calculations for F = 0.9 for Ca =
0.5, 1 and 2 are presented. Below Ca = 0.5, the interface is
almost symmetric with respect to the vertical axis. As Ca
increases, the interface deforms and the positions of the
contact lines move. Although there is a significant inter-
face deformation, the streamlines of the liquid flow form
only a single circulation cell. At high Ca, no cusp can be
detected, and the effect of rotation rate leads to minimal
changes in the position of the free surface even for large
rotation speeds corresponding to Ca = 20.

The agreement between our experiments and the cal-
culations leads to the following conclusions. For F = 0.5,
two cells are always observed up to cylinder rotation rates
which cause interface breakup. For F = 0.75, there is a
transition from two cells to a single cell for Ca between 2
and 3. For F = 0.9, only a single cell is observed.

5 Summary

The present work provides information necessary for un-
derstanding of the flow in the neighborhood and at the
free surface of flow in a partially filled horizontal Couette
device, and could serve as the basis for application of the
flow or to support analysis of the flow-induced segregation
in the particle-laden flow in the same geometry. In addi-
tion, the results serve as an interesting test of the accuracy
of numerics of free-surface Stokes flow as this flow exhibits
features on a range of scales from the cusp to the global
structure, as well as a very rich sub-surface flow topology.

Specifically, we have quantified the morphology of the
free surface of the flow of a very viscous liquid in a par-
tially filled Couette apparatus at annular filling fractions
of F = 0.5, 0.75, and 0.9. When the inner cylinder ro-
tates, a thin liquid film is dragged over and plunged into

the remaining liquid pool. At the smallest F , two counter-
rotating flow cells are observed, one directly adjacent to,
and driven by the motion of, the inner cylinder and the
other a recirculation lying below. At the free surface, these
flow zones are delimited by a stagnation line and a cusp
line. When increasing the flow rate, the stagnation line
moves from the inner cylinder to the steady wall. On the
downstream side of the rotating cylinder, the tip of the
cusp line moves below the inner cylinder as the rotation
rate increases, with significant deformation of the cells. At
the intermediate fill fraction of F = 0.75, a significant de-
crease in size of the bottom cell with increasing rotation
rate is found, while F = 0.9 exhibits only a single cell for
all driving rates.

To properly understand the phenomena in this free-
surface Couette geometry and related systems requires
consideration of the free surface structure as a function
of dynamical variables. The quantitative reconstruction
of the free surface, confirmed by our calculations of the
flow, indicates that the deformation at elevated driving
rates is extreme for the lower fill fractions. A comparison
between the measurements and these calculations using
a phase-field (diffuse interface) model of the free surface
is provided. The position of the stagnation line and the
height of the liquid film over the inner cylinder are quan-
titatively predicted. However, the position of the cusp and
the liquid level downstream are only qualitatively recov-
ered by the calculations.
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