
J. Fluid Mech. (2015), vol. 771, R2, doi:10.1017/jfm.2015.207

Localised turbulence in a circular pipe flow
with gradual expansion

Kamal Selvam1, Jorge Peixinho1,† and Ashley P. Willis2

1Laboratoire Ondes et Milieux Complexes, CNRS & Normandie Université, 53 rue de Prony,
76600 Le Havre, France
2School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH, UK

(Received 2 March 2015; revised 27 March 2015; accepted 30 March 2015)

We report the results of three-dimensional direct numerical simulations for incompress-
ible viscous fluid in a circular pipe flow with a gradual expansion. At the inlet,
a parabolic velocity profile is applied together with a constant finite-amplitude
perturbation to represent experimental imperfections. Initially, at low Reynolds
number, the solution is steady. As the Reynolds number is increased, the length
of the recirculation region near the wall grows linearly. Then, at a critical Reynolds
number, a symmetry-breaking bifurcation occurs, where linear growth of asymmetry is
observed. Near the point of transition to turbulence, the flow experiences oscillations
due to a shear layer instability for a narrow range of Reynolds numbers. At higher
Reynolds numbers, the recirculation region breaks into a turbulent state which remains
spatially localised and unchanged when the perturbation is removed from the flow.
Spatial correlation analysis suggests that the localised turbulence in the gradual
expansion possesses a different flow structure from the turbulent puff of uniform pipe
flow.
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1. Introduction

In axisymmetric sudden-expansion pipe flow, bifurcations of flow patterns have been
studied experimentally (Sreenivasan & Strykowski 1983; Latornell & Pollard 1986;
Hammad, Ötügen & Arik 1999; Mullin et al. 2009) and numerically (Sanmiguel-
Rojas, Del Pino & Gutiérrez-Montes 2010; Sanmiguel-Rojas & Mullin 2012). In
these studies, flow separation after the expansion and reattachment downstream leads
to the formation of a recirculation region near the wall. Its extent grows linearly
as the flow velocity is increased. Numerical simulations and experimental results
have shown that the recirculation region breaks symmetry once a critical Reynolds
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number is exceeded. Here, the Reynolds number Re is defined as Re=Ud/ν, where
U is the bulk flow velocity, d is the inlet diameter and ν is the kinematic velocity.
In experiments, the recirculation region loses symmetry at Re ' 1139 (Mullin et al.
2009) and then breaks to form localised turbulence which tends to remain in the same
spatial position (Sreenivasan & Strykowski 1983). In terms of global stability analysis,
Sanmiguel-Rojas et al. (2010) have shown that the symmetry breaking occurs after a
critical Reynolds number of ≈3273. The reason for the early occurrence of transition
is believed to be experimental imperfections. Numerical simulations with an applied
finite-amplitude perturbation (Sanmiguel-Rojas & Mullin 2012) found the transition
to turbulence to occur at Re & 1500, which depends upon the amplitude of the
perturbation.

The goal of the present investigation is to numerically model the gradual expansion
(diverging) pipe flow with an imperfection added to the system that could trigger
early transition to turbulence. The long-term motivation of this study is to understand
the effect of the diverging angle on the transition to turbulence. In § 2, the numerical
method and its validation are presented. In § 3, the results for the asymmetric growth
of the recirculation are discussed, along with the oscillation of the flow, the time
evolution of the localised turbulence and observations of decay of the turbulent
structure.

2. Numerical method

The solutions are obtained by solving the unsteady three-dimensional incompressible
Navier–Stokes equation for a viscous Newtonian fluid:

∇ · v = 0, (2.1)
∂v

∂t
+ v · ∇v =−∇P+ 1

Re
∇2v, (2.2)

where v= (u, v,w) and P denote the scaled velocity vector and pressure respectively.
Equations (2.1) and (2.2) were non-dimensionalised using the inlet pipe diameter, d,
for the length scale and the bulk velocity at the inlet, U, for the velocity scale. The
time scale and the pressure scale are therefore t = d/U and ρU2, where ρ is the
density of the fluid. The equations are solved with the boundary conditions:

v(x, t) = 2(1− 4r2)ez, x ∈ Inlet, (2.3)
v(x, t) = 0, x ∈Wall, (2.4)

Pn− n · ∇v(x, t)/Re = 0, x ∈Outlet, (2.5)

corresponding to a fully developed Hagen–Poiseuille flow (2.3) at the inlet, no-slip
(2.4) at the walls and an open boundary condition (2.5) at the outlet of the pipe, ez
is the unit vector in the axial direction and r is the cylindrical radius. Equation (2.5)
enforces Neumann boundary conditions in weak sense for the velocity components,
which minimises the possibility of numerical oscillations and reflections of outgoing
waves, where n is the normal surface vector directed out of the computational
domain. The equations were solved using an open source code nek5000 developed
by Fischer et al. (2008). Spatial discretisation is based on the spectral-element
method using Lagrange polynomials. The equations are reduced to a weak form and
discretised in space by Galerkin approximation. Here, Nth-order Lagrange polynomial
interpolants on Gauss–Lobatto–Legendre points were chosen as the basis for the
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FIGURE 1. The spectral-element mesh used in the present study with a divergent angle
of α = 26.57◦. (a) Sketch of the domain, (b) cross-section of the mesh (the dark lines
represent the elements and the grey lines represent the Gauss–Lobatto–Legendre points)
and (c) a three-dimensional view of the mesh near the diverging section. The mesh is
made of K = 14 400 elements.

velocity space, and similarly for the pressure space. In all the simulations PN − PN

formulations were implemented, which denotes that the same polynomial order was
used for both velocity and pressure. The time-stepping in nek5000 is semi-implicit
in which the viscous terms of the Navier–Stokes equations are treated implicitly
using third-order backward differentiation and the nonlinear terms are treated by
a third-order extrapolation scheme (Maday, Patera & Rønquist 1990; Fischer et al.
2008).

Figure 1 shows the geometry of the divergent pipe along with the mesh. It consists
of three parts: (i) the inlet, (ii) the diverging section and (iii) the outlet. The velocity
field is simulated in the Cartesian coordinate system (x, y, z). The expansion ratio is
E=D/d= 2, where D is the outlet pipe diameter. The length of the divergent section
is kept constant in this study and of length d, which leads to a divergence half-angle
of α = 26.57◦. The length of the inlet pipe is 5d and the outlet pipe length is 150d.

The mesh was developed using hexahedral elements with a non-uniform growth rate.
It contains 80 elements with refinement near the wall in the (x, y) cross-section and
180 elements in the z direction. A refinement has been applied in the diverging section,
as shown in figure 1(c), in order to resolve the flow separation. The streamwise extent
of the elements increases along z in the outlet section. The total number of grid points
in the simulation is approximately KN3, where K is the number of elements and N is
the polynomial order. The flow was initialised with fully developed Poiseuille flow in
the inlet section, and each simulation was computed using 512 cores. Table 1 shows
the length of the recirculation region for different orders of polynomial at Re= 1000.
The mesh convergence study was carried out by changing the polynomial order N
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N Reattachment position zr Viscous drag

3 43.68 0.8430
4 43.65 0.3566
5 43.58 0.3419
6 43.59 0.3418
7 43.58 0.3419

TABLE 1. Convergence study, changing the order of the polynomial N. Here, zr is the
non-dimensional length of the recirculation region in the pipe for Re= 1000.
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FIGURE 2. (a) Streamline of the recirculation region of length zr inside the diverging pipe
at Re= 300, (b) recirculation region length, zr, with respect to Re. Here,u corresponds
to best-fit proportionality given by 2zr = 0.0866Re for the present case,@ corresponds to
2zr = 0.0874Re (Cantwell, Barkley & Blackburn 2010), and A and C correspond to the
experimental results (Latornell & Pollard 1986; Hammad et al. 1999) 2zr = 0.088Re and
2zr = 0.096Re respectively for sudden expansions.

of the Lagrange polynomial of the spectral elements. The observations used to assess
convergence are the flow reattachment point, zr, and the viscous drag, (ρU2/2)AwCf ,
where Aw is the surface area of the outlet pipe wall and Cf is the friction coefficient.
The length of the recirculation region depends sensitively on the resolution of the
separated shear layer, particularly near the separation point. The polynomial order of
N = 5 is sufficient to resolve the flow accurately. These values of N and the mesh
have been used in all the following simulations; this corresponds to KN3 ≈ 1.8× 106

grid points.
To validate the simulations further at higher Reynolds number, the growth of the

recirculation region as a function of the Reynolds number is shown in figure 2.
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The simulations show that the extent of the recirculation region is of the form
2zr = 0.0866Re, which agrees well with previous studies for sudden-expansion flow.
Unlike the sudden-expansion flow, for a divergent pipe, the recirculation is formed
after a critical flow velocity, shown in the inset to figure 2, which depends upon the
divergence half-angle α and Re (Peixinho & Besnard 2013).

3. Results and discussion

For sudden-expansion pipe flow, numerical simulations (Cantwell et al. 2010;
Sanmiguel-Rojas et al. 2010) have shown that the flow is unstable to infinitesimal
perturbations for Re ≈ 3273, but the transition in experiments occurs at much lower
Re (Sreenivasan & Strykowski 1983; Latornell & Pollard 1986; Mullin et al. 2009).
The exact nature of the observed instability is therefore unclear. Small disturbances
in an experimental set-up are likely to be amplified due to the convective instability
mechanism, and appear to be necessary to realise time-dependent solutions. Numerical
results (Cantwell et al. 2010) have shown that small perturbations are amplified by
transient growth in the sudden expansion for Re 6 1200, advect downstream and
decay. Here, the initial simulations showed that the flow is linearly stable for up
to Re & 2200 for the present computational domain. For larger Re, the recirculation
bubble extends close to the end of the outlet section and cannot be calculated reliably.
In order to induce early transition, a disturbance is applied to the numerical system
in the form (Sanmiguel-Rojas & Mullin 2012)

u(x, t)= 2(1− 4r2)ez + δey, (3.1)

adding a finite-amplitude crosswise velocity of magnitude δ.
The perturbation (3.1) distorts the flow, nudging it towards the y direction. A

perturbation value of δ = 0.001 is applied in the following simulations. For the
sudden-expansion pipe, this is the value of δ for which most results are presented
in Sanmiguel-Rojas & Mullin (2012). Results were found to be compatible with the
imperfections found in experiments. Figure 3(a–c) shows cross-sections of the pipe
at z = 22.5 and presents contours of the axial velocity. Figure 3(a) is at Re = 1000
where the flow remains almost axisymmetric. For Re = 1600, figure 3(b) shows an
asymmetry which can just be identified by comparing the solid and dashed lines.
To see more clearly the effect of perturbation on the flow, the perturbed flow is
subtracted from the (unperturbed) base flow, where it can be observed in the contour
plot, figure 3(c), that the flow is accelerated on the right-hand side of the pipe section
and decelerated on the opposite side. The applied perturbation at the inlet creates a
recirculation region with a biased extent (see figure 3d). The reattachment pattern is
very sensitive to the form of the perturbation given at the inlet, which motivates the
application of a simple form of disturbance.

The asymmetry growth of the flow in the cross-section at z = 22.5 is measured
by calculating the distance of the position of the peak axial velocity component
from the centre of the pipe. The square of this distance is denoted ε (Mullin et al.
2009). Figure 4(a) shows ε as a function of Re with least-squares fitting on the
data obtained. It can be seen that at low Re there is no variation in the position of
the centroid; a steady symmetric state is observed for Re < 912. As Re increases, a
symmetry-breaking bifurcation occurs at a critical Rec = 912. This value is smaller
than the case of a sudden-expansion pipe (Rec = 1139 in the experiment by Mullin
et al. 2009). Clearly, the critical Re depends on α and δ. The value of ε increases
linearly (912<Re< 1500), forming a steady asymmetric state, with biased growth in
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FIGURE 3. Cross-sections of the pipe. Contour line plots of the axial velocity (solid
black lines) taken at z = 22.5 for (a) Re = 1000 and (b) Re = 1600. The dashed line
corresponds to the inlet pipe diameter and the blue lines with arrows represent the
crosswise velocities within the recirculation region. (c) Contour plot of the perturbation,
i.e. flow with perturbation (δ= 0.001) subtracted from the base flow (δ= 0) for Re= 1600.
(d) Streamwise cross-section of the flow around the reattachment point at Re= 1600 with
δ = 0.001.
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FIGURE 4. (a) Asymmetry growth of the flow measured by the square of the distance of
the centroid from the centre of the pipe, ε, as a function of Re. The lines are least-squares
fits of the data and the intersection of the lines is at Rec = 912 for the estimate of the
symmetry-breaking bifurcation point. (b) Oscillations of ε at Re= 1650 as a function of
time. The inset is the fast Fourier transform of the signal with a fundamental frequency
f = 0.468 and a period doubling sub-harmonic SH = 0.234.

the recirculation region. The magnitude of the symmetry deviation grows as the square
root of Re, typical of supercritical bifurcation. At larger Re an oscillation state arises
(15006Re6 1650), and the flow becomes time-dependent, due to the spatio-temporal
oscillation of the reattachment point downstream (Sreenivasan & Strykowski 1983).
The error bars in figure 4(a) represent the amplitude of the fluctuations in ε. These
oscillations are also observed in experiments on sudden-expansion flow (Mullin et al.
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FIGURE 5. (a) Plot of the friction coefficient, Cf , with respect to Re. The blue filled
circles represent the steady laminar asymmetric flow and the red filled squares represent
the unsteady localised turbulent state. The continuous line represents the fit for the laminar
state, Cf = 1.97/Re− 0.0012, and the dotted line represents a fit for the localised turbulent
state, Cf = 0.0066(Re × E)−0.22. The shaded region 1650 . Re . 3273 is the coexistence
regime (hysteresis for δ = 0), where the left-hand subregion indicates the extent of the
regime explored on the laminar branch in the present system. (b) Contour plot of the
streamwise velocity of the localised turbulence at Re= 1680 with δ = 0.001.

2009). When Re= 1650, the flow experiences quasi-periodic oscillations in the shear
layer around the recirculation region. This can be seen in the velocity components
along the axial as well as in the crosswise direction, and also in the ε evolution (see
figure 4b). A fast Fourier transform (FFT) was performed on the signal to identify the
dominant frequency. The inset in figure 4(b) is the FFT of the signal as a function
of frequency, where f = 0.468 and SH = 0.234 is a period doubling sub-harmonic.
Here, f seems to correspond to the frequency of vortex shedding around a circular or
spherical body which occurs due to the Kelvin–Helmholtz instability (Fabre, Auguste
& Magnaudet 2008; Bobinski, Goujon-Durand & Wesfreid 2014). This frequency of
oscillation depends upon the type of the perturbation added to the system (Marquet
et al. 2008; Ehrenstein & Gallaire 2009).

Figure 5(a) shows the friction coefficient, Cf , as a function of Re, computed on the
wall of the outlet section. At low Re, the flow is steady and asymmetric, and the value
of Cf decreases. A significant contributor to the low values of Cf is that the present
flow includes the recirculation region, which extends up to approximately half of the
outlet section before transition. Around the transition Reynolds number, Ret ' 1680,
the recirculation region inside the pipe breaks and leads to a localised turbulent state,
shown in figure 5(b).

An important feature of the turbulence observed here is that it remains spatially
localised at a constant position, as observed in sudden-expansion pipe flows
(Sreenivasan & Strykowski 1983; Sanmiguel-Rojas & Mullin 2012). The formation
of turbulence, near the diverging section, increases Cf due to higher internal mixing
and resulting shear at the boundary. In this regime, Cf values scale roughly with the
same exponent as the Blasius friction law, even though straight pipe flows are not
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FIGURE 6. Relaminarisation study. (a) Spatio-temporal diagram of the streamwise
vorticity along the centreline of the pipe, where z = 0 corresponds to the start of the
diverging section. The localised turbulence decays from Re0 = 2000 to Ref = 1500. (b)
Relaminarisation time, tR, versus Ref .

turbulent at these Re values. The present calculations for the perturbed flow were
run up to t = 600 and the localised turbulence remained present. The perturbation
was then removed and the flow was simulated up to t = 1200. The turbulence was
observed to be self-sustained, and to occupy the same spatial position. The left-hand
shaded region in figure 5(a) shows the range of Re in which a laminar state as
well as a turbulent state coexist for 1650 . Re . 2200 for the present computational
domain. Simulation above Re> 2200 without perturbation produces a steady laminar
flow with a recirculation region that extends close to or beyond the outlet section.
We have therefore limited the range of Re for computation on the laminar branch.
For the case of simulations with a perturbation, the amplified energy in the diverging
section breaks the recirculation region, creating an early transition, forming localised
turbulence, and the computation may be carried out for larger Re along the turbulent
branch. Global stability analysis (Sanmiguel-Rojas et al. 2010) has revealed that the
first bifurcation for the sudden-expansion pipe occurs at Re & 3273, above which
natural transition can be expected without any added perturbation. Given the much
larger computational cost, and that we have already computed a range of Re where
the laminar and turbulent flows coexist, we have not pursued the linear instability.

Further relaminarisation simulations were performed, where localised turbulence
was generated at Re0 = 2000 and the decay to laminar flow was observed for Re
below Ret. In figure 6(a), the spatio-temporal diagram shows a typical relaminarisation
case. At t = 0, Re is reduced suddenly from Re0 = 2000 to Ref = 1500. Here, the
localised turbulence detaches from the inlet section almost immediately, then convects
downstream and simultaneously decays, which can be seen as the disappearance of the
vortical structures (Sibulkin 1962; Sreenivasan 1982). The relaminarisation time, tR,
was obtained by monitoring the time taken for the total energy in the computational
domain to fall below a threshold of 10−6. Above Ref = 1500 the turbulence leaves
the computational domain before falling below the threshold. Figure 6(b) shows
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FIGURE 7. The evolution of localised turbulence. Spatio-temporal diagram of the
streamwise vorticity along the centreline of the pipe, where z= 0 corresponds to the start
of the diverging section, for (a) Re=4000, (b) Re=3000, (c) Re=2000 and (d) Re=5000.
Panels (e) and ( f ) show q=√v2 +w2 in (red) and the streamwise velocity u (blue) at the
final time step of (c) and (d). The dashed lines represent the Poiseuille centreline velocity
in the inlet and outlet sections.
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tR as a function of Ref . The straight line fit indicates that the decay time of the
turbulence increases linearly for Re < 1500, as identified in experiments (Peixinho
& Besnard 2013). Here, no significant period of time was observed before the
detachment of turbulence from the walls. Simulations were not carried out within the
hysteresis region due to high computational cost. For these Re values the turbulence
is self-sustained for some time before detachment from the inlet section, and the time
before detachment is expected to diverge rapidly as in uniform pipe flow (Avila et al.
2011).

Figure 7 shows the streamwise vorticity spatio-temporal diagram of simulations for
(a) Re= 4000, (b) Re= 3000, (c) Re= 2000 and (d) Re= 5000; the horizontal axis
represents the centre axis of the pipe from the diverging section to the outlet. The
streamwise vorticity value has been normalised with the maximum vorticity and been
plotted with the same scale for comparison purposes. It can be seen that for Re =
2000 the turbulence onsets at t = 25 and initially moves downstream; at t = 100 the
turbulence starts moving upstream towards the diverging section and finally holds a
stable position z ' 10. For Re = 5000, the onset of turbulence occurs at nearly the
same time as that of Re= 2000, but the amount of time it takes to reach a localised
position is t= 40, which is much smaller than that for Re= 2000. The time taken to
hold a stable position decreases as Re increases. The velocity trace downstream of the
localised turbulence for Re= 2000 recovers laminar flow (see figure 7e). It should be
noted that the Reynolds number based on the outlet diameter is half the value of Re.
In the case of Re = 5000, the flow downstream of the intense region of turbulence
exhibits small patches of intense vorticity (see figure 7d). The streamwise velocity
trace (see figure 7f ) suggests weak turbulence, which does not return to laminar flow
and eventually could lead to puff splitting (Avila et al. 2011; Shimizu et al. 2014).
This property of expansion flow with laminar inlet profile forming localised turbulence
and decaying in the outlet section is in good agreement with experiments (Peixinho
& Besnard 2013).

The structure within the localised turbulence is further studied using spatial
correlations, which have been used to identify fast and slow streaks that dominate
the coherent structures within puffs in pipe flow (Willis & Kerswell 2008). The
correlation in the streamwise velocity is obtained using the function

C(θ, z)= 2〈uz(θ + φ, z)uz(φ, z)〉φ
〈max(uz)2〉t

∣∣∣∣
r

, (3.2)

where 〈·〉s indicates averaging over the subscripted variable, uz is the instantaneous
axial flow velocity and r is the radial position. The signature of structures of a
particular azimuthal wavenumber m is obtained by projecting the correlation function,
Cm(z) = 2〈C(θ, z) cos(mθ)〉θ (Willis & Kerswell 2008). Figure 8(a,b) shows the
correlation at r = 0.5d, and it can be seen that the m= 1 mode dominates the flow,
whereas in figure 8(c,d) at r = 0.8d, the m = 2 structure dominates the flow along
with m = 3 with a much smaller correlation value, which suggests that the flow
is more active in the centre region than near the wall. Overall this analysis points
out that the localised turbulence in the gradual expansion possesses a different flow
structure from the turbulent puff (Wygnanski & Champagne 1973; Willis & Kerswell
2008; Shimizu & Kida 2009), where m = 3 and 4 dominate the flow near the wall.
The cross-sections in figure 8(e–h) indicate slow and fast moving flow.
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FIGURE 8. Spacial correlation on the streamwise velocity of localised turbulence at Re=
2000. Contour of correlation, C(θ, z), at (a) r= 0.5d and (c) r= 0.8d. Projection function
of C(θ, z) for different azimuthal wavenumbers m at (b) r= 0.5d and (d) r= 0.8d. (e–h)
Cross-sections of the axial flow relative to the time averaged profile with fast flow (white)
and slow flow (red) taken at the corresponding vertical dashed lines.

4. Conclusions

Numerical results for the flow through a circular pipe with a gradual expansion
in the presence of an imperfection have been presented. The small imperfection
leads to a linear asymmetry growth of the recirculation region, which has also been
observed in experiments on sudden-expansion pipe flow. As Re is increased, the long
recirculation region oscillates seemingly due to shear Kelvin–Helmholtz instability
(Sreenivasan & Strykowski 1983; Mullin et al. 2009). This time-dependent motion
lies in a narrow range of Re for the amplitude studied here (δ = 0.001). With this
level of imperfection, for Re > 1680 localised turbulence is triggered in the outlet
section of the pipe. As undisturbed laminar flow (δ = 0) is linearly stable up to at
least Re = 2200, the small disturbance therefore provides a shortcut to subcritical
turbulence. Due to the increasing length of the recirculation bubble, the critical
Reynolds number for linear instability is beyond our computational limit. We observe
that the triggered turbulence is self-sustained if the disturbance is removed. Hence,
flow through a perfect gradual axisymmetric expansion (δ = 0) exhibits multiplicity
in the solution set of the Navier–Stokes equations, where both the axisymmetric
laminar state and turbulent motion coexist over a substantial range of Re, from
Re ≈ 1650 up to the critical Reynolds number for linear instability. By comparison
with sudden expansion, we expect the critical Reynolds number to be approximately
3273 (Sanmiguel-Rojas et al. 2010). A hysteresis loop therefore exists, where for
δ = 0 transition to turbulence occurs at Ret & 3273 when Re is increased, and return
to laminar flow occurs at Re ≈ 1650 when Re is decreased. The hysteresis range
depends on the value of δ. Our simulations suggest that for δ = 0.001 the hysteresis
range is small (1650 . Re . 1680).

This property of localised turbulent flow with laminar inlet profile forming localised
turbulence and decaying in the outlet section agrees with experiments (Sreenivasan
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& Strykowski 1983; Peixinho & Besnard 2013). The localised turbulence does not
convect downstream but holds a stable spatial position. The structure within the
localised turbulence is further studied using spatial correlations, which identify fast
and slow streaks that dominate the coherent structures. The main finding is that flow
is more active in the centre region than near the wall. Hence, it is important to note
that the localised turbulence observed here has a different structure from that of a
turbulent puff in uniform pipe flow (Willis & Kerswell 2008).
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