
Flow in a circular expansion pipe flow:
effect of a vortex perturbation on localised
turbulence

Kamal Selvam1, Jorge Peixinho1 and Ashley P Willis2

1 Laboratoire Ondes Milieux Complexes, CNRS & Université du Havre, F-76600 Le
Havre, France
2 School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH, UK

E-mail: jorge.peixinho@univ-lehavre.fr

Received 31 October 2015
Accepted for publication 6 April 2016
Published 7 November 2016

Communicated by L Tuckerman

Abstract
We report the results of three-dimensional direct numerical simulations for
incompressible viscous fluid in a circular pipe flow with a sudden expansion. At
the inlet, a parabolic velocity profile is applied together with a finite amplitude
perturbation in the form of a vortex with its axis parallel to the axis of the pipe.
At sufficiently high Reynolds numbers the recirculation region breaks into a
turbulent patch that changes position axially, depending on the strength of the
perturbation. This vortex perturbation is believed to produce a less abrupt
transition than in previous studies, which applied a tilt perturbation, as the
localised turbulence is observed via the formation of a wavy structure at a low
order azimuthal mode, which resembles an optimally amplified perturbation.
For large vortex amplitude, the localised turbulence remains at a constant axial
position. It is further investigated using proper orthogonal decomposition,
which indicates that the centre region close to the expansion is highly energetic.

Keywords: transition to turbulence, pipe flow, expansion flow, localised
turbulence

(Some figures may appear in colour only in the online journal)

1. Introduction

The flow through an axisymmetric expansion in a circular pipe is of both fundamental and
practical interest. The geometry arises in many applications, ranging from engineering to
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physiological problems such as the flow past stenoses (Varghese et al 2007). The bifurcations
of flow patterns in sudden expansions have been studied experimentally (Sreenivasan and
Strykowski 1983, Latornell and Pollard 1986, Hammad et al 1999, Mullin et al 2009) and
numerically (Sanmiguel-Rojas et al 2010, Sanmiguel-Rojas and Mullin 2012). In all these
studies, flow separation after the expansion and reattachment downstream leads to the for-
mation of a recirculation region near the wall. Its extent grows linearly as the flow velocity
increases.

Numerical simulations and experimental results have shown that the recirculation region
breaks axisymmetry once a critical Reynolds number is exceeded. Here, the Reynolds number
is defined n=Re Ud , where U is the inlet bulk flow velocity, d is the inlet diameter and ν is
the kinematic viscosity. In experiments, the recirculation region loses symmetry at Re 1139
(Mullin et al 2009) and forms localised turbulent patches that appear to remain at a fixed axial
position (Sanmiguel-Rojas and Mullin 2012, Peixinho and Besnard 2013, Selvam et al 2015).

Global stability analysis (Sanmiguel-Rojas et al 2010) suggests that the symmetry
breaking occurs at a much larger critical Re. The reason for the early occurrence of transition
in experiments is believed to be due to imperfections, and the transition is very sensitive to the
type or the form of the imperfections. These imperfections are modelled in numerical
simulations by adding arbitrary perturbations. Small disturbances are likely to be amplified
due to the convective instability mechanism, and appear to be necessary to realise time-
dependent solutions. Numerical results (Cantwell et al 2010), have also shown that small
perturbations are amplified by transient growth in the sudden expansion for Re 1200,
advect downstream then decay. Simulations in relatively long computational domains, which
accommodate the recirculation region with an applied finite amplitude perturbation at the inlet
(Sanmiguel-Rojas and Mullin 2012, Selvam et al 2015), found the transition to turbulence to
occur at Re 1500, depending upon the amplitude of the perturbation.

The most basic perturbation is to mimic a small tilt at the inlet, via a uniform cross-flow,
on top of the Hagen–Poiseuille flow (Sanmiguel-Rojas and Mullin 2012, Duguet 2015,
Selvam et al 2015). This perturbation creates an asymmetry in the recirculation region
downstream, which oscillates due to the Kelvin–Helmholtz instability, similar to that of a
wake behind axisymmetric bluff bodies (Bobinski et al 2014). At higher Re, the recirculation
breaks to form localised turbulence. Another possibility for perturbation is to include a
rotation of the inlet pipe. Numerical simulations with a swirl boundary condition (Sanmiguel-
Rojas et al 2008), have shown the existence of three-dimensional instabilities above a critical
swirl velocity. Experimental studies have also been conducted (Miranda-Barea et al 2015),
for expansion ratio of 1:8, confirming the existence of convective and absolute instabilities,
and also time-dependent states. The higher the Re, the smaller is the swirl sufficient for the
transition between states to take place. In the present investigation, a small localised vortex
perturbation is added at the inlet, without wall rotation, along with the Hagen–Poiseuille flow.
This vortex perturbation has been implemented to observe a less abrupt transition to localised
turbulence than observed for the tilt case, enabling study of the most energetic modes during
the transition.

The goal of the present investigation is to numerically model the expansion pipe flow
with a localised vortex perturbation added to the system. In the part 2, the numerical method
is presented. Next, in the part 3, the results for the spatio-temporal dynamics of the turbulent
patch are discussed along with the proper orthogonal decomposition (POD) analysis. Finally,
the conclusions are stated in part 4.
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2. Numerical method

Equations governing the flow are the unsteady three-dimensional incompressible Navier–
Stokes equation for a viscous Newtonian fluid:

 =v 0, 1· ( )
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¶
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v v v
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, 22· ( )

where =v u v w, ,( ) and P denote the scaled velocity vector and pressure respectively. The
equations (1) and (2) were non-dimensionalised using inlet d and U. The time scale and the
pressure scale are therefore t=d/U and rU2, where ρ is the density of the fluid. The
equations are solved with the boundary conditions:

= - Îv x e xt r, 2 1 4 Inlet, 3z
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= Îv x xt, 0 Wall, 4( ) ( )
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corresponding to a fully developed Hagen–Poiseuille flow (3) at the inlet, no-slip (4) at the
walls, and an open boundary condition (5) at the outlet of the pipe. The equation (5) is a
Neumann boundary at the outlet, with n being the surface vector pointing outwards from the
computational domain, chosen to avoid numerical oscillations. The initial condition used here
was a parabolic velocity profile within the inlet pipe section as well as in the outlet section.
The velocity jump, near the expansion, adjusts within few time steps. Nek5000 (Fischer
et al 2008), an open source code, has been used to solve the above equations. Spectral
elements using Lagrange polynomials are used for spatial discretisation of the computational
domain. The weak form of the equation is discretised in space by Galerkin approximation.
N th order Lagrange polynomial interpolants on a Gauss–Lobatto–Legendre mesh were
chosen as the basis for the velocity space, similarly for the pressure space. The viscous term
of the Navier–Stokes equations are treated implicitly using third order backward
differentiation and the nonlinear terms are treated by a third order extrapolation scheme
making it semi-implicit. The velocity and pressure were solved with same order of
polynomial.

Figure 1(a) is a schematic diagram of the expansion pipe. The length of the inlet pipe is
d5 , the outlet pipe is d150 , and the expansion ratio is given by = =E D d 2, where D is the
outlet pipe diameter. The computational mesh was created using hexahedral elements.
Figure 1(b) shows the (x, y) cross section of the pipe with 160 elements and the streamwise
extent of the pipe has 395 elements. The mesh is refined near to the wall and near the
expansion section, see figure 1(c). A three-dimensional view of the mesh along the expansion
pipe is displayed in figure 1(d). The mesh used here contains approximately four times more
elements than our previous study (Selvam et al 2015). Table 1 shows the parameters used to
assess convergence: (i) the flow reattachment point, zr, and (ii) the viscous drag. The conv-
ergence study was done at Re=1000 (zr is very sensitive and may be affected by the outlet at
larger Re) and no qualitative changes were found for Re=2000. N=5 is sufficient to
resolve the flow accurately near the separation point as well as at the reattachment point. The
total number of grid points in the mesh is approximately = ´KN 7.9 103 6, where K is the
number of elements. The entire set of simulations reported here took over one calendar year to
complete on four processors.
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3. Vortex perturbation, effect of the amplitude of the vortex perturbation and
POD

3.1. Vortex perturbation

When trying to make connection between experimental observations and simulations, the
issue of the choice of perturbation must be addressed. Many perturbations have been tested
experimentally (Darbyshire and Mullin 1995, Peixinho and Mullin 2007, Nishi et al 2008,
Mullin 2011) and replications in numerical works have reproduced some of the observations
(Mellibovsky and Meseguer 2007, Åsén et al 2010, Loiseau 2014, Wu et al 2015).

Here, we aim to consider a simple localised perturbation, and introduce a localised vortex
to the inlet Poiseuille flow. The radial size of the vortex may be controlled as well as its
position in the inlet section. This perturbation also satisfies the continuity condition at the
injection point and automatically breaks mirror symmetry, contrary to the tilt perturbation
(Sanmiguel-Rojas et al 2010, Selvam et al 2015).

Figure 1. The spectral-element mesh of the sudden expansion pipe. (a) Sketch of the
domain, (b) (x, y) cross-section of the mesh (the dark lines represent the elements and
the grey lines represent the Gauss–Lobatto–Legendre mesh), (c) (x, z) cross section of
the pipe around the expansion and (d) truncated three-dimensional view of the
expansion pipe. The mesh is made of =K 63, 200 elements.

Table 1. Convergence study, changing the order of polynomial N. zr is the non-
dimensional length of the recirculation region in the pipe for Re=1000.

N ´KN 103 6( ) Reattachment position zr Viscous drag

4 4.0 43.58 0.3725
5 7.9 43.72 0.3333
6 13.6 43.73 0.3323

Fluid Dyn. Res. 48 (2016) 061418 K Selvam et al

4



We define = - + -s x x y y0
2

0
2( ) ( ) as the distance between the centre of the vortex

at x y,0 0( ) to any point (x, y) in the cross-section, at which the local measure of rotation is
given by

⎧
⎨⎪
⎩⎪


  




W = - <

>

s
s R s

s

1, 2,
2 , 2 ,
0, ,

6( ) ( )

where  is the radius of the vortex. The velocity perturbation ¢u in Cartesian coordinates is
then
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where δ is a parameter measuring the strength of the vortex. The full inlet condition is
therefore
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The parameter  = 0.25 is kept constant in all the present simulations. The perturbation is
added at the inlet pipe along with the parabolic flow velocity profile at = -z 5. Figure 2(a) is
a cross-section of velocity field of the vortex perturbation. Figures 2(b) and (c) show contour
plots of axial vorticity at the inlet section of the pipe, = -z 5, and further downstream at
= -z 2.5. The contours show that the perturbation diffuses and becomes smoother along the

inlet. At the expansion section, z=0, perturbations are known to be amplified (Cantwell
et al 2010).

3.2. Effect of amplitude of the vortex perturbation

In previous works (Sanmiguel-Rojas et al 2010, Selvam et al 2015), the addition of a tilt
perturbation has been found to trigger transition to turbulence. However, the tilt perturbation
(i) creates a discontinuity at the inlet wall and (ii) does not break the mirror symmetry. In this
respect, the vortex perturbation permits a more controlled transition, resulting in smoother
dependence of the transitional regime on the strength of the perturbation. Figure 3 shows a

Figure 2. (a) Vector plot of ¢u . Axial vorticity contour of the vortex perturbation
( = 0.25) in the inlet of the pipe at (b) = -z 5 and (c) = -z 2.5 for Re=2000.
Black and white corresponds to the maximum and minimum of vorticity and orange
(grey) represents zero vorticity.
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space–time diagram for the centreline streamwise vorticity at Re=2000 for different per-
turbation strengths, δ. After »t 500, it can be seen that for different δ the flow settles into
different behaviours of the turbulent patches, observed over the following 1500 time units.
Computational costs limit simulations to larger t.

For d < 0.05, the perturbation decays before reaching the expansion section. At
d = 0.05, see figure 3(a), a turbulent localised patch forms, then moves downstream. Around
t 600 another turbulent patch forms upstream at z 60 and the downstream patch decays

immediately. This process appears to repeat in a quasi-periodic manner.
When the amplitude of the vortex perturbation is increased, d = 0.1, see figure 3(b),

again a patch of turbulence appears, then moves downstream. When a turbulent patch arises
upstream at t 600, the patch downstream again decays immediately. This time, however,
the process appears to repeat more stochastically, in time and location, of the arising upstream
patch. Occasional reversal in the drift of the patch is also observed. It is expected that if the
patch drifts far downstream, then it will relaminarise, since the the local Reynolds number
based on the outlet diameter is =Re E 1000, somewhat below the 2000 typically required
for sustained turbulence. It is likely that the deformation to the flow profile by the upstream
patch reduces the potential for growth of perturbations within the patch downstream, dis-
rupting the self-sustaining process.

Still for d = 0.1, figure 4 shows the streamwise vorticity for an (x, z) section over the
whole pipe: d150 . At t=1000, see figure 4(a), it can be seen that only a single turbulent
patch exists in the domain. At t=1025, see figure 4(b), an axially periodic structure appears
at z 10. Once this develops into turbulence, see figure 4(c), the patch downstream dis-
sipates rapidly, see figure 4(d). The appearance of the new patch in our expansion is different
from the puff splitting process observed in a straight pipe (Wygnanski and Champagne 1973,

Figure 3. Spacetime diagram of the centreline streamwise vorticity for Re=2000 for
(a) d = 0.05, (b) d = 0.1, and (c) d = 0.2.
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Nishi et al 2008, Duguet et al 2010, Hof et al 2010, Moxey and Barkley 2010, Avila
et al 2011, Shimizu et al 2014, Barkley et al 2015). Here the new turbulent patch evolves out
of the amplified perturbation at the entrance and breaks down into turbulence, forming a new
patch upstream of an existing patch. The patch drifts downstream and decays. The slopes in
the diagrams of figure 3 indicate the drift velocity of the patch, which varies with respect to δ

and z, and decreases as δ increases. Figure 5 shows the iso-surface streamwise vorticity for the
axially periodic structure that appears at z 10, in this case it is shown for < <z12.5 25 at
t=2000. This structure appears repeatedly and resembles the optimally amplified pertur-
bation found in a sudden expansion flow by (Cantwell et al 2010). Initially the structure

Figure 4. x−z cross sections of streamwise vorticity contour plot for Re=2000 with
d = 0.1 at (a) t=1000, (b) t=1025, (c) t=1050 and (d) t=1100. Each triad
represents the full pipe length, truncated at every d50 for simple visualisation purpose.
Here black and white corresponds to the maximum and minimum of vorticity and
orange (grey) represents zero vorticity.

Figure 5. Iso-surface of streamwise vorticity resembling the optimal perturbation for
d= =Re 2000, 0.1 at t=1025 and spanning from z=12.5 to 25 from left to right.
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appears near the expansion region, where the flow is very sensitive to perturbations, it is
amplified and then breaks down into turbulence downstream.

For d = 0.2, see figure 3(c), the turbulent patch never goes beyond z 60. Here the
perturbation develops consistently into turbulence, so that its position remains roughly con-
stant. The patch remains close enough to the entrance so that there is insufficient space for a
new distinct patch to arise.

For large amplitude d = 0.5, the turbulence patch does not drift, remaining at a more
stable axial position, shown in the spatiotemporal diagram of figure 6(a). A snapshot of the
flow at t=100 is also presented in figure 6(b), and this streamwise vorticity contour plot
highlights the effect of the vortex perturbation that is clearly at the origin of the turbulent
patch.

In previous works (Sanmiguel-Rojas et al 2010, Selvam et al 2015), spatially localised
turbulence has also been observed, and one question that can be asked is how similar or
different is this localised turbulence from the turbulent puffs observed in straight pipe flow
(Wygnanski and Champagne 1973)? Using spatial correlation functions, previous works
(Selvam et al 2015) have found that the localised turbulence in expansion pipe flow is more
active in the centre region than near the wall, hence different from the puffs in uniform pipe
flow (Willis and Kerswell 2008). In the next section, we provide results on a another analysis
tool: the POD.

3.3. POD of localised turbulence

Principle component analysis, often called POD in the context of fluid flow analysis, has been
widely used by several researchers (Lumley et al 1967, Sirovich 1987, Noack et al 2003,
Meyer et al 2007) to identify coherent structures in turbulent flows by extracting an ortho-
gonal set of principle components in a given set of data. Each data sample ai, being a snapshot
state, may be considered as a vector in m-dimensional space, where m is the number of grid
points. These vectors may be combined to form the columns of the m×n data matrix

=X a a a... n1 2[ ], where, n is the number of snapshots. Let T be an m×n matrix with

Figure 6. (a) Spacetime diagram for the centreline streamwise vorticity for Re=2000
and d = 0.5. (b) Zoomed contour plot of the streamwise vorticity for z up to 50, black
and white corresponds to the maximum and minimum of vorticity and orange (grey)
represents zero vorticity. Note the perturbation development between the expansion
section and the turbulent patch.
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columns of principle components, related by to X by

=T XW. 10( )
T is intended to be an alternative representation for the data, having columns of orthogonal
vectors with the property that the first ¢n columns of T span the data in X with minimal
residual, for any ¢ <n n. Here the inner product aTa corresponds to the energy norm for the
minimisation.

W is defined via the singular value decomposition (SVD) of the covariance matrix X XT .
If the SVD of X is

= SX U W , 11T˜ ( )
where, Σ is the diagonal matrix of the singular values, then

= S S = SX X W U U W W W . 12T T T T T2˜ ˜ ( )
Also the SVD of X XT may be calculated

=X X USV . 13T T ( )
Comparing equations (12) and (13) we have that ºW U. Therefore, to calculate the principle
components we construct the n×n matrix of inner products X XT , where it is assumed that
n m, and compute its SVD (13). Only the first columns of T are expected to be of interest,

and the jth principle component ujˆ may be obtained by

å= =
=

Uu a u u u u, . 14j
i

n

i i j j j j
T

j
1

, ˆ ( ) ( )

Figure 7. Cross sections (x z, ), (x y, ) and iso-surfaces of the proper orthogonal
decomposition. (a) Mode 1, (b) mode 2 and (c) mode 3 computed for Re=2000 and
d = 0.5 using 1500 snapshots. Red (light-grey) and blue (dark-grey) correspond to the
maximum and minimum of streamwise velocity component.
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The normalised singular values

S = -S n 1 , 15jj jj
ˆ ( ) ( )

are a measure of the energy captured by each component, having the property that Sjj
ˆ equals

the root mean square of a ui
T

jˆ over the data set.
A large number of snapshots were collected, and it was been found that after 1200

snapshots the energy of the leading POD modes (principle components) became independent
of the number of snapshots. Figure 7(a) shows the axial velocity of mode 1, which constitutes
74% of the total kinetic energy. It can be seen that the centre core region is predominant and
its shape is reminiscent of the vortex perturbation. Hence, the inlet flow has more effect on the
localised turbulence than the wall shear. Mode 2 is shown in the figure 7(b), has two
predominant regions along the axial direction and constitutes »20% of the energy. Mode 3
represents only »3% of the energy and is shown in the figure 7(c). The remaining modes
appear more complex and less energetic.

In addition, simulations were carried out by changing and x y,0 0( ) independently. It has
been found that (i) a smaller vortex perturbation:   0.2 and (ii) a vortex closer to the
centreline could not sustain a fixed localised turbulent patch (Wu et al 2015).

4. Conclusions

Numerical results for the flow through a circular pipe with a sudden expansion in presence of
a vortex perturbation at the inlet have been presented. For Re=2000 and a relatively small
perturbation amplitude,  d0.05 0.1, a patch of turbulence in the outlet section is observed
to drift downstream, then decay upon the appearance of another patch of turbulence upstream.
Moreover, this vortex perturbation produces a controlled transition, in that the transitional
regime depends smoothly on the perturbation strength, and the origin of symmetry breaking is
defined. Further, the turbulent patch that forms first appears via a low order azimuthal mode
resembling an optimal perturbation. The process repeats quasi-periodically or stochastically
as the amplitude of the perturbation, δ, increases. The turbulent patch formation is different
from the puff splitting behaviour observed in uniform pipe flow (Wygnanski and Cham-
pagne 1973, Hof et al 2010, Avila et al 2011, Barkley et al 2015), as here the new patches
arise upstream of existing turbulent patches.

The drift velocity of the patch varies with δ, decreasing as δ is increased. For large δ, the
patch does not drift downstream, but holds a stable spatial position forming localised tur-
bulence. The structure within the localised turbulence is further studied using POD, which
indicates that the first mode comprises most of the energy and the flow is more active in the
centre region than near the wall.
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