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There have been many investigations of the stability of Hagen–Poiseuille flow in the 125
years since Osborne Reynolds’ famous experiments on the transition to turbulence in a
pipe, and yet the pipe problem remains the focus of attention of much research. Here, we
discuss recent results from experimental and numerical investigations obtained in this
new century. Progress has been made on three fundamental issues: the threshold
amplitude of disturbances required to trigger a transition to turbulence from the laminar
state; the threshold Reynolds number flow below which a disturbance decays from
turbulence to the laminar state, with quantitative agreement between experimental and
numerical results; and understanding the relevance of recently discovered families of
unstable travelling wave solutions to transitional and turbulent pipe flow.
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1. Introduction

The stability of Hagen–Poiseuille flow (Hagen 1839; Poiseuille 1840) in a long
circular pipe has intrigued scientists ever since Reynolds’ (1883) original
experiments. Reynolds showed that the single control parameter for the flow is
what is now called the Reynolds number, RedUD/n, where U is the mean
velocity, D is the pipe diameter, and n is the kinematic viscosity of the fluid. His
research was mainly focused on transition initiated at the entrance to the pipe,
and an important aspect of his work was in showing the importance of controlling
entry conditions. The majority of the subsequent experimental investigations of
this problem have concentrated on the effects of disturbances created at the inlet,
as reviewed by Mullin (in preparation). On the other hand, the majority of the
theoretical investigations of pipe flow transition have been concerned with fully
developed Hagen–Poiseuille flow, as discussed by Kerswell (2005) and Eckhardt
et al. (2007). The central issue is that Hagen–Poiseuille flow is widely accepted to
be stable to infinitesimal perturbations (e.g. Meseguer & Trefethen 2003) and
yet, in practice, most pipe flows are turbulent. The process whereby turbulence
arises is still not understood even in outline and, given its history and practical
importance, this problem has become the outstanding challenge of hydrodynamic
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stability theory. The engineering implications of understanding transition in
pipe flows are widespread, most notably in determining how large a pipe and
how great a pressure gradient are needed to achieve a specified flow rate.

We will first review some widely accepted facts about the stability of
Hagen–Poiseuille flow and then discuss advances made this century on the
topic. Hagen–Poiseuille flow takes approximately Re/30 diameters (Fargie &
Martin 1971) to develop from a uniform inlet flow into a pipe, and the stability
characteristics of this spatially evolving flow have attracted fewer investigations
(as reviewed by Duck 2005) than the fully developed case. In carefully controlled
experiments, developed Hagen–Poiseuille flow can be maintained up to
Rew100 000 (Pfenniger 1961). Hence, if it were possible to carry out a noise-
free experiment in a perfectly circular, very long pipe, all evidence suggests that
the flow would be laminar. A natural consequence of this is that, being dependent
on both amplitude and form of the initial disturbance, there is no well-defined
critical value of Re for transition to turbulence. At low or ‘transitional’ Re, a
more meaningful question is to ask whether a critical value Re low exists, below
which turbulence cannot be maintained, i.e. indicating the transition from
turbulence of a disturbance to the laminar state. The only theoretical result
available is Joseph & Carmi’s (1969) energy stability result of 81.49 below which
all disturbances are guaranteed to decay monotonically. This strict lower
bound is, however, very conservative given experimental evidence places
Re lowZO(2000).

Transition from laminar flow is a result of finite amplitude disturbances either
intentionally introduced or naturally present in the experiment, and thus explains
the wide range of values of Relow quoted in the literature (Mullin in preparation).
This sensitivity naturally poses a series of questions, such as which disturbance
is the most dangerous? (i.e. triggers turbulence with the minimal energy or
amplitude), and how does this threshold amplitude or energy scale with increasing
Re? The linear mechanism of transient growth is an important ingredient in
the answers to these questions and was the focus of several studies at the end of
the last century (Trefethen et al. (1993) and Schmid & Henningson (1994) and the
review by Grossman (2000)).

When transition occurs, it is generally abrupt and the character of the state
achieved is Re dependent. For 1760(Re(2300, localized ‘puffs’ appear as
identified by Wygnanski & Champagne (1973). A flow visualization image of a
puff is shown in comparison with a numerical realization at ReZ1800 (figures 1
and 2). These are generally approximately 20D long and have a weak front with a
sharp trailing edge. They contain rich structure and maintain their form as they
propagate along the pipe at approximately 0.9U. There is a lower bound in Re for
their existence where puffs can appear to suddenly decay without warning after
travelling many hundreds of pipe diameters downstream. This metastability of
puffs has undoubtedly contributed to the uncertainty surrounding the minimal
Relow for sustained turbulence.

For ReT2700, the disordered motion takes the form of ‘slugs’ (Wygnanski
et al. 1975). These are regions of fully turbulent flow which have sharp front and
rear interfaces with the laminar flow field. The leading edge travels faster than
the mean flow, the trailing edge slower, and so slugs expand as they propagate
along the pipe. For ReT10 000, the leading and trailing edges travel at
approximately 1.5U and 0.3U, respectively, so that the turbulence rapidly
Phil. Trans. R. Soc. A



Figure 1. Experimental flow visualization (using Mearlmaid Pearlessence illuminated by a vertical
sheet of light) compared with axial vorticity for a numerically calculated puff at the same
ReZ1800. The numerical resolution is 65 radial points, G64 azimuthal Fourier modes and G1024
axial Fourier modes, representing 34 million degrees of freedom.
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Figure 2. Numerical puff spectrum at ReZ2000, EnZmaxkm½maxðu2
km; v

2
km;w

2
kmÞ�, where (ukm, vkm,

wkm) are the radial, azimuthal and axial velocity spectral amplitudes with indices n, m and k
referring to the (transformed) Chebyshev, Fourier and Fourier expansions in (r, q, z), respectively
(similarly for Em and Ek; see Willis & Kerswell (2007) for more details). A snapshot from a run with
(n, k, m) up to (40, G24, G384; as in Willis & Kerswell 2007, 2008) is compared with a snapshot
taken from a much higher resolution of (65, G64, G1024) run to show convergence.

3Transition in a pipe
spreads along the pipe. The transition between puffs and slugs takes place in the
Re range approximately 2300–2700 and is complicated since it may involve puff
splitting as discussed by Wygnanski et al. (1975). This general scenario was
established by Wygnanski’s group using entry flow disturbances in an air-flow
pipe driven by a blower with a constriction which minimized pressure variations
in the pipe when transition occurred. The finding has been confirmed for
disturbances created in fully developed flow under constant mass flux conditions
by Darbyshire & Mullin (1995).

A significant recent theoretical development in pipe flow has been the
discovery of the first alternative solutions to the unidirectional, steady Hagen–
Poiseuille flow in the problem. These take the form of travelling waves (TWs)
Phil. Trans. R. Soc. A
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that appear through saddle-node bifurcations for ReR773 with upper (high wall
shear stress) and lower branch (low wall shear stress) solutions and are
immediately unstable, although intriguingly, only in a very small number of
directions in state space. They were first found by searching within discrete
rotational symmetry subspaces (Faisst & Eckhardt 2003; Wedin & Kerswell
2004) but later, TWs with no rotational symmetry were also isolated (Pringle &
Kerswell 2007). Each TW family is parametrized by its axial wavenumber which,
at a given Re, has finite range (e.g. see figs. 3 and 4 of Kerswell 2005). The
significance of these solutions is that they present saddle points in phase space
whose stable and unstable manifolds can tangle with each other to create a
composite object (either a chaotic saddle or attractor) which is able to sustain
orbits away from the laminar state for long times. At least initially, the hope was
that the emergence of these solutions as Re increases would provide a good
estimator for transition. However, rotationally asymmetric TWs have now been
found down at ReZ773 (Pringle & Kerswell 2007) which is under 50% of Re low.
Exactly why transition is delayed so long in Re remains an intriguing issue.

The outline of this article is as follows. In §2, we discuss results on threshold
amplitudes of different disturbances needed to trigger transition. Experimental
and numerical results on the relaminarization problem are described in §3.
Evidence collected thus far on the significance of TWs in transition is
summarized in §4 and §5 provides a brief perspective on what we consider to
be some of the outstanding issues.
2. Triggering turbulence: amplitude thresholds

As early as 1883, Reynolds realized that a finite amplitude disturbance is
required to trigger transition and that the laminar flow becomes more and more
sensitive to background disturbances as Re increases. In order to establish
whether the threshold for transition depends systematically on Re, control of the
disturbance needs to be established. The exact positioning of the disturbance is
also important as a distinction needs to be drawn between disturbances added to
the inlet and those introduced into developed flow. Adding disturbances to
developing flow is important for practical applications but making contact with
theory is difficult since there is complex interaction between the developing base
flow and any added disturbance. Binnie & Fowler (1947) showed that these
interactions could produce surprisingly long transient effects. Hence, we focus
here on the effects of adding finite amplitude perturbations to the well-defined
case of fully developed Hagen–Poiseuille flow.

Darbyshire & Mullin (1995) established the possibility of systematic
dependence of the threshold amplitude for disturbances added to fully developed
flow. However, a scaling could not be extracted from their results and it was Hof
et al. (2003) who showed that the threshold amplitude A (defined by the mass
flux) of a synchronized six-azimuthal jet disturbance has a scaling of AwReK1

over a significant range. These results are reproduced in figure 3 where additional
data points have been added from recent work by Peixinho & Mullin (2007) who
also showed that a disturbance created by a single jet scales as ReK1.
Disturbance amplitudes that are below the threshold decay as they propagate
downstream. The decay was normally complete within 100D. For disturbance
Phil. Trans. R. Soc. A
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Figure 3. Plot of A versus Re for six azimuthal jets, each with diameter dZ0.5 mm. Disturbances
with amplitudes above the threshold gave rise to puffs, slugs or turbulence downstream. Those
below the line decayed within 100D. Each point represents a minimum of 40 runs of the
experiment. The filled symbols denote a lower bound of Re for stable puffs. They were obtained by
keeping A constant and observing whether puffs relaminarized within the length of the pipe. The
data points marked with crosses are from Hof et al. (2003) and those with open squares and filled
squares are from Peixinho & Mullin (2007).

5Transition in a pipe
amplitudes above the threshold, transition took place within 100D and the state
achieved was either a puff or slug depending on Re. Each data point was obtained
by repeating the experiment approximately 40 times since the threshold is a
statistical process as discussed by Darbyshire & Mullin (1995). The left-hand set
of points that are nearly vertical illustrate that there is an extreme dependence of
the disturbance amplitude on Re, now appreciated to be related to the transition
from turbulence. This is discussed in §3 where an alternative strategy was
required to explore this region systematically.

The key feature of the experiment used to obtain the results shown in figure 3was
to use a boxcar-shaped disturbance which allowed the amplitude and timescales of
the applied disturbance to be separated. Recently, Peixinho & Mullin (2007) have
revisited this experiment using a ‘push–pull’ disturbance in the form of a jet and
outlet pair, which ensures that no net mass is added. Careful orientation of this jet
and outlet with respect to the pipe axis was found to excite streaks and hairpin
vortices. The threshold amplitude scalings were found to vary significantly

from AwReK1 with scalings of AwReK1.3 when orientated in a spanwise or
streamwise sense and AwReK1.5 for 458 oblique orientation to the streamwise
direction. Significantly, the amplitude thresholds for the push–pull disturbances
were an order of magnitude less than those for jets implying that transition
can be triggered much more easily by oblique vortices than jet disturbances.
The exponents indicate that transient growth effects may be relevant and this is
Phil. Trans. R. Soc. A
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supported by observations of sequential transition sequence through streaks and
hairpins. The creation of a hairpin vortex sequence has recently been confirmed
numerically by Asen et al. (submitted). In summary, crossing the divide
between laminar and turbulent flows is generally a catastrophic process but
careful design of the disturbance can reveal a more gradual transition where
stronger contact with numerical simulations can be made.

Numerically, the challenge in making contact with experiments is replicating
details of the spatially localized nature of the initial disturbance applied in the
laboratory. Testing when turbulence is triggered by a global smooth disturbance
is a more natural first step. Mellibovsky & Meseguer (2006) have examined the
stability of pairs of axially independent streamwise vortices to disturbances
periodic along the axis. They obtained the scaling laws AwReK1 for three pairs,
AwReK1.1 for two pairs and AwReg where K1.5%g%K1.35 for a lone pair of
vortices. Subsequently, they have developed an ingenious localized body forcing
to simulate a sixfold jet disturbance and find results that agree with Hof et al.
(2003) for ReO4000 (Mellibovsky & Meseguer 2007). This variability of scaling
threshold with exact disturbance structure has been emphasized recently by
other calculations exploring the flow dynamics artificially confined to the
laminar–turbulent boundary. This boundary separates initial conditions that
immediately laminarize from those which become turbulent. An initial condition
placed precisely in this boundary will then by definition do neither, instead
walking an interesting ‘dynamical’ tightrope between these two scenarios. The
large-time behaviour of trajectories on this boundary is chaotic (Schneider et al.
2007a), typical energies of which give another estimate of the threshold energy
for transition (e.g. see fig. 4 of Schneider et al. (2007a) and fig. 8b of Willis &
Kerswell (submitted), which finds an AwReK1.5 scaling). Many TWs are found
to be embedded in this boundary (Duguet et al. submitted). The direction from
which this long-term behaviour within the boundary is approached, which may
include an initial period of significant growth, explains the variation in scaling
laws seen. The closest point of approach (in energy norm) of the laminar–
turbulent boundary to the laminar state defines the most dangerous initial
condition of all.
3. Relaminarization: threshold Re for sustained puffs

Regardless of the exact structure of the disturbance, the amplitude thresholds
show a divergence at Re small enough (e.g. see figure 3), indicating that below
a threshold Relow turbulence cannot be sustained. Identifying this threshold
directly in experiments by adding very large disturbances is fraught with
difficulty since significant distortion of the mean flow can result as discussed by
Mullin & Peixinho (2005, 2006). Peixinho & Mullin (2006) developed an
alternative experimental protocol in which the relaminarization of turbulence
was considered for Re!Re low. They created a puff of the type shown in figure 1
for ReORe low in fully developed flow using a well-defined disturbance. The puff
was allowed to reach a developed ‘equilibrium’ state, before Re was reduced in a
controlled way to a selected value below Relow. The statistics of how far the puff
propagated before relaminarizing was recorded over a large number of runs at the
same Re. The probability of a puff lasting to a given distance was found to decay
Phil. Trans. R. Soc. A
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Figure 4. The mean half-life t plotted against Re for experimental data (black squares; from
Peixinho & Mullin 2006) and numerical simulations (grey circles; from Willis & Kerswell 2007) for
linear–linear and log–linear (inset) axes. The error bar for the numerical data point at ReZ1860 on
the main plot is smaller than the actual symbol.

7Transition in a pipe
exponentially on average indicating a memoryless process (the probability of a
puff relaminarizing in a given distance or time interval depended only on the size
of the interval). A well-defined half-life t could be extracted for this process that
satisfied the remarkably simple scaling relation tw(1750KRe)K1, predicting
that puff turbulence became sustained at Re lowZ1750. This is in accord with
estimates of Re at which large amplitude perturbations do not give rise to
transition downstream using a selection of different disturbances.

A notable advantage of this experimental protocol is that the procedure can be
repeated using direct numerical simulations since the dependence on initial
conditions has been effectively removed. Numerical investigations were carried
out in a pipe 50D long across which periodic boundary conditions were applied,
using over 3 million degrees of freedom and observing simulated puffs for times of
up to 1000D/U (Willis & Kerswell 2007). Random snapshots from a long puff
evolution generated at ReZ1900 were used to initiate a series of puff runs at a
given Re!1900. The same exponential probability distribution emerged as in
experiments with the mean half-life scaling like tw(1870KRe)K1 indicating an
estimate for Relow only 7% above the experimental value (figure 4). Given the
sensitivity of the relaminarization process and the different errors influencing
the experiments and numerics, this correspondence, the first between theory and
experiment in this problem, represents a significant success.
Phil. Trans. R. Soc. A
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4. Coherent structures in pipe turbulence

The initial discovery of TWs in pipe flow (Faisst & Eckhardt 2003; Wedin &
Kerswell 2004) was closely followed by the first experimental sightings using PIV
measurements in puffs and slugs (Hof et al. 2004). Subtracting the equivalent
laminar state from the instantaneous flow field clearly showed periodically
arranged fast streaks near the pipe wall and, at least for the puff cross sections,
interior slow-streak structures that resembled those of the TWs (see fig. 2 of Hof
et al. 2004). The fact that these waves could appear, albeit transiently, as
coherent structures in a turbulent flow was a landmark realization in the shear
flow community—that unstable solutions could be dynamically relevant. From a
dynamical systems standpoint, this was merely emphasizing that saddle points
can be just as important as attracting fixed points in organizing phase space.
Follow-up experimental work by Hof et al. (2005) in turbulent puffs concentrated
upon finding evidence for the ‘self-sustaining cycle’ (Waleffe 1995, 1997). This is
the name given to the process whereby streamwise rolls, streaks and wavelike
structures symbiotically coexist feeding energy to, and receiving energy from,
each other and underpins the existence of the TWs (Wedin & Kerswell 2004).

Attempts at quantifying how closely and how frequently TWs were
approached by turbulent pipe flows came later using short 5D long pipe
numerical simulations. Kerswell & Tutty (2007) used a projection approach
whereby the instantaneous flow field was projected in turn onto the velocity
fields of all known TWs (prior to Pringle & Kerswell 2007) in a pipe of that
length. Good ‘overlaps’ indicating near-realizations of a TW were found to occur
for approximately 10% of the time. Schneider et al. (2007b) examined a
streamwise velocity correlation function evaluated near the pipe wall to identify
fast-streak coherent structures finding a higher incident rate consistent with a
more inclusive criterion. While initiating their turbulent runs, Kerswell & Tutty
(2007) discovered that all the lower branch TWs they tried sat in the laminar–
turbulent boundary: using the TW perturbed slightly along its most unstable
direction led to a turbulent evolution whereas perturbing in the opposite sense
led immediately to smooth relaminarization. They also found that some of the
upper branch TWs sat within the turbulent attractor at ReZ2400, according to
kinetic energy and wall shear-stress measures.

Further numerical work in 5D pipes has recently focused on the laminar–
turbulent boundary with Schneider et al. (2007a) finding a chaotic attractor
there in which the flow on average has a fascinatingly simple structure: two fast
streaks sandwiching a slow streak near the pipe wall. This was later identified as
an asymmetric TW (Pringle & Kerswell 2007) that appears to represent the
minimal coherent unit which can exist. This TW was found to bifurcate from a
mirror-symmetric counterpart born at ReZ773, considerably lower than the
ReZ1251 threshold found earlier for TWs with discrete rotational symmetry
(Faisst & Eckhardt 2003; Wedin & Kerswell 2004). Work by Duguet et al.
(submitted) examining trajectories on the laminar–turbulent boundary has found
evidence for repeated visits to other new TWs and heteroclinic connections
between TWs likely to support complicated dynamics.

In longer pipes, Willis & Kerswell (2008) have used a two-space one-time
streamwise correlation function to search for evidence of fast-streak coherent
structures in turbulent puffs. A significant subset of observed coherence bears a
Phil. Trans. R. Soc. A
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Figure 5. Appearance of TW-like structures upstream and downstream of the trailing edge zTE in a
snapshot of a puff. In the cross sections, three- and fourfold rotationally symmetric flow fields are
found at zZzTEC4D and zTEK3D. Contours are of the streamwise velocity anomaly relative to
the laminar flow: black/white indicating slower/faster moving fluid. Directly underneath is the
contour plot of the correlation function Cðq; zÞd2hu 0

zðqCf; zÞu 0
zðf; zÞif=hmaxf;zðu 0

zÞ2it evaluated
at rZ0.4D, where u 0

z is the deviation from the time-averaged profile calculated at each zKzTE
station; shown over the full periodic 50D domain. h$is indicates averaging over the subscripted
variable. C(q, z) is used to identify coherent fast-streak structures. Below this are (r, z) sections of
the axial vorticity u, the radial velocity u and the streamwise velocity difference w from the
laminar flow. Contours are at 0.001, 0.01 and 0.1 in units of U/D (u) or U (u, w) with the black
colour indicating data O0.1 and white data !0.001. The plots show that u and u decay much more
quickly than w. The decay of the azimuthal velocity component (not shown) is like that of u.

9Transition in a pipe
strong resemblance to TW structures in regions upstream and downstream of the
trailing edge (at z TE), i.e. away from the most turbulently energetic area of
the puff; an example from the calculation with 34 million degrees of freedom is
shown in figure 5. Examining the partitioning of the energy into the roll and
streak fields shows that there is near equipartitioning of energy between these
two structures at the trailing edge whereas the defining characteristic of the TWs
(both upper and lower branches) is the fact that the roll energy is typically at
least an order of magnitude smaller than the streak energy (figure 6). The
conclusion drawn from this is that at ReZ2000 the TWs sit in an intermediate
region of phase space removed from the turbulence, realized locally at zTE. As a
puff travels at only approximately 0.9U, fluid, on average, passes through it. Far
upstream ðzK zTE/KNÞ, the fluid ‘trajectory’ starts at the origin (laminar
state), passes through the TW region of phase space as z increases, to reach the
fully turbulent region near the trailing edge. Downstream of the trailing edge,
the trajectory passes back through the TW region to relaminarize as
zK zTE/CN. Consequently, TWs are only visited just upstream and down-
stream of the trailing edge (see figure 6 for a two-dimensional realization of this).
Phil. Trans. R. Soc. A
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Figure 6. Roll and streak energies at different parts of a puff at ReZ2000. For the velocity field
expanded in Fourier modes m in q, the z -dependent total streak and roll energies (dashed line) are
defined as Estreakðz; tÞdpRe2
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the exact TW solutions (grey solid thick and thin lines). Energies for known TWs, marked ‘TW’,
are parametrized by the continuum of axial wavenumbers permitted, are fairly low. The three TW
lines correspond to waves with two-, three- and fourfold discrete rotational symmetry about the
axis (lower thick, thin middle and upper thick lines, respectively).

Figure 7. Flow visualization of wave at ReZ1740 after reduction in Re from 1900.

A. P. Willis et al.10
This picture of TWs being visited on relaminarization resonates with some
experimental observations reported by Peixinho & Mullin (2006). During their
relaminarization experiments, they sometimes noted transient wavelike
structures downstream of the trailing edge. A flow visualization of a transient
state at ReZ1740 is shown in figure 7. The evident wavelike structures were
realized in approximately 10% of the experimental runs and they have the
characteristic form of a TW with twofold discrete rotational symmetry and a
wavelength of 1.5D.

Most recent experimental evidence for the existence of TWs is provided by
the investigations of Peixinho & Mullin (2007). Using a push–pull disturb-
ance aligned obliquely to the flow, they found a sequential onset process
rather than the abrupt transition associated with the ReK1 threshold found by
Phil. Trans. R. Soc. A
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Figure 8. A sequence of flow visualization images showing the development of a disturbance from
the oblique push–pull perturbation with AZ0.0023 at ReZ2200. The disturbance was injected
in the plane of the photograph. Images were taken at (a) 0.1, (b) 0.2, (c) 0.6, (d ) 1 and (e) 1.5 s after
the beginning of the injection using a camera travelling at the same speed as the flow.

11Transition in a pipe
Hof et al. (2003). Moreover, hairpin vortices were formed in the initial stages of
transition for disturbance amplitudes close to threshold and may be interpreted
as TWs. An example of the creation of hairpin vortices during transition is given
in the set of flow visualization images shown in figure 8 at ReZ2200. The waves
can clearly be seen in the top image that was taken 0.1 s after the push–pull
disturbance was started. The propagating disturbance was tracked using a
moving camera and the rapid breakdown to a puff can be seen. The trailing edge
of the disturbance has only moved approximately 4D (0.6 s) before significant
disorder appears.
5. Outlook

Despite the successes discussed above, many challenges still loom large. For
example, why does a localized spatially inhomogeneous turbulent structure
which is the puff exist at all? How is the turbulence at the trailing edge able to
Phil. Trans. R. Soc. A
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remain localized? Is this region a valuable microcosm of global slug turbulence?
And, of course, how can we characterize, predict and perhaps control the fully
developed turbulent state itself? The recent discovery of streaks and hairpin
structures suggests that the strategy adopted by Fransson et al. (2006) for
enhancing stability of laminar flow in boundary layers may be useful for pipe
flows. The most dangerous part of the pipe for transition is the entrance
region where disturbances can grow considerably before Hagen–Poiseuille flow
is established. Controlling this using a grooved contraction to promote
streamwise rolls and hence streaks may lead to control methods. As discussed
above, Hagen–Poiseuille flow seems to be remarkably robust in practice and,
hence, once it is established it is likely to be stable to disturbances of a
predictable amplitude.

The phenomena described in this article all have plausible explanations using
low-order dynamical systems theory. For example, the inferred global bifurcation
of §3 at which transient puffs become sustained can be understood as a boundary
crisis in reverse, that is, an attractor is born as Re increases beyond the
bifurcation point rather than being destroyed. Furthermore, the attractor itself
and its leaky predecessor can be understood as the consequence of a tangle of
homoclinic and heteroclinic connections between TW saddle points and other
generic objects such as periodic orbits. At present, however, a step of faith has to
be taken to make these connections. Pipe flow is, after all, the archetypal
spatiotemporal system that specializes, at least at transitional Re, in selecting
localized flows rather than global structures more immediately suited to a
dynamical systems interpretation. Constructing the correct formalism to bridge
this ‘PDE to ODE’ gap remains an outstanding challenge, not only in the pipe
problem but also in fluid mechanics as a whole.

Finally, it should hopefully be clear from this article that significant progress in
the pipe flow problem has been recently achieved through the coordinated use of
all three methodologies: experimentation, numerical simulation and theory. This
balanced three-pronged attack will surely remain the ideal approach in exploring
and understanding fluid mechanical phenomena in the twenty-first century.
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