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There have been many investigations of the stability of Hagen–Poiseuille flow in the
one hundred and twenty five years since Osborne Reynolds’ famous experiments on
the transition to turbulence in a pipe, and yet the pipe problem remains the focus
of attention of much research. Here we discuss recent results from experimental
and numerical investigations obtained in this new century. Progress has been made
on three fundamental issues: the threshold amplitude of disturbances required to
trigger a transition to turbulence from the laminar state, the threshold Reynolds
number flow below which a disturbance decays from turbulence to the laminar state,
with quantitative agreement between experimental and numerical results, plus un-
derstanding the relevance of recently-discovered families of unstable travelling wave
solutions to transitional and turbulent pipe flow.
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1. Introduction

The stability of Hagen–Poiseuille flow (Hagen 1839, Poiseuille 1840) in a long cir-
cular pipe has intrigued scientists ever since Reynolds’ (1883) original experiments.
Reynolds showed that the single control parameter for the flow is what is now called
the Reynolds number, Re := UD/ν where U is the mean velocity, D is the pipe
diameter, and ν the kinematic viscosity of the fluid. His research was mainly fo-
cused on transition initiated at the entrance to the pipe, and an important aspect
of his work was in showing the importance of controlling entry conditions. The
majority of the subsequent experimental investigations of this problem have con-
centrated on the effects of disturbances created at the inlet, as reviewed by Mullin
(2008). On the other hand, the majority of the theoretical investigations of pipe
flow transition have been concerned with fully developed Hagen–Poiseuille flow, as
discussed by Kerswell (2005) and Eckhardt et al. (2007). The central issue is that
Hagen–Poiseuille flow is widely-accepted to be stable to infinitesimal perturbations
(e.g. Meseguer & Trefethen 2003) and yet, in practice, most pipe flows are turbu-
lent. The process whereby turbulence arises is still not understood even in outline,
and given its history and practical importance, this problem has become the out-
standing challenge of hydrodynamic stability theory. The engineering implications
of understanding transition in pipe flows are widespread, most notably in deter-
mining how large a pipe and how great a pressure gradient are needed to achieve a
specified flow rate.

We will first review some widely-accepted facts about the stability of Hagen-
Poiseuille flow and then discuss advances made this century on the topic. Hagen-
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Poiseuille flow takes ≈ Re/30 diameters (Fargie & Martin 1971) to develop from
a uniform inlet flow into a pipe, and the stability characteristics of this spatially-
evolving flow have attracted fewer investigations (as reviewed by Duck 2005) than
the fully developed case. In carefully controlled experiments, developed Hagen-
Poiseuille flow can be maintained up to Re ∼ 100, 000 (Pfenniger, 1961). Hence if it
were possible to carry out a noise-free experiment in a perfectly circular, very long
pipe, all evidence suggests that the flow would be laminar. A natural consequence of
this is that, being dependent on both amplitude and form of the initial disturbance,
there is no well-defined critical value of Re for transition to turbulence. At low or
‘transitional’ Re a more meaningful question is to ask whether a critical value Relow

exists, below which turbulence cannot be maintained, i.e. indicating the transition
from turbulence of a disturbance to the laminar state. The only theoretical result
available is Joseph & Carmi’s (1969) energy stability result of 81.49 below which
all disturbances are guaranteed to decay monotonically. This strict lower bound is,
however, very conservative given experimental evidence places Relow = O(2000).

Transition from laminar flow is a result of finite amplitude disturbances either
intentionally introduced or naturally present in the experiment and thus explains
the wide range of values of Relow quoted in the literature (Mullin 2008). This
sensitivity naturally poses a series of questions, such as which disturbance is the
most dangerous? (i.e. triggers turbulence with the minimal energy or amplitude.)
And how does this threshold amplitude or energy scale with increasing Re? The
linear mechanism of transient growth is an important ingredient in the answers to
these questions and was the focus of several studies at the end of the last century
(Trefethen et al. 1993, Schmid & Henningson 1994 and the review by Grossman
2000).

When transition occurs, it is generally abrupt and the character of the state
achieved is Re-dependent. For 1760 . Re . 2, 300, localised ‘puffs’ appear as
identified by Wygnanski& Champagne (1973). A flow visualization image of a puff
is shown in comparison with a numerical realization at Re = 1800 (see figures 1
and 2). These are generally around 20D long and have a weak front with a sharp
trailing edge. They contain rich structure and maintain their form as they propagate
along the pipe at approximately 0.9U . There is a lower bound in Re for their
existence where puffs can appear to suddenly decay without warning after travelling
many hundreds of pipe diameters downstream. This meta-stability of puffs has
undoubtedly contributed to the uncertainty surrounding the minimal Relow for
sustained turbulence.

For Re & 2, 700, the disordered motion takes the form of ‘slugs’ Wygnanski et

al. (1975). These are regions of fully turbulent flow which have sharp front and rear
interfaces with the laminar flow field. The leading edge travels faster than the mean
flow, the trailing edge slower, and so slugs expand as they propagate along the pipe.
For Re & 10, 000 the leading and trailing edges travel at ≈ 1.5U and 0.3U respec-
tively so that turbulence rapidly spreads along the pipe. The transition between
puffs and slugs takes place in the Re range ≈ 2300− 2700 and is complicated since
it may involve puff splitting as discussed by Wygnanski et al. (1975). This general
scenario was established by Wygnanski’s group using entry flow disturbances in
an air-flow pipe driven by a blower with a constriction which minimized pressure
variations in the pipe when transition occurred. The finding have been confirmed
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Figure 1. Experimental flow visualization (using Mearlmaid Pearlessence illuminated by a
vertical sheet of light) compared with axial vorticity for a numerically calculated puff at
the same Re = 1800. The numerical resolution is 65 radial points, ±64 azimuthal Fourier
modes and ±1024 axial Fourier modes, representing 34 million degrees of freedom.
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Figure 2. Numerical puff spectrum at Re = 2000, En = maxkm[max(u2
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where (ukm, vkm, wkm) are the radial, azimuthal and axial velocity spectral amplitudes
with indices n,m and k referring to the (transformed) Chebyshev, Fourier and Fourier
expansions in (r, θ, z), respectively (similarly for Em and Ek): see Willis & Kerswell (2007)
for more detail. A snap shot from a run with (n, k, m) up to (40,±24,±384) (as in Willis
& Kerswell 2007, 2008a) is compared with a snapshot taken from a much higher resolution
of (65,±64,±1024) run to show convergence.

for disturbances created in fully developed flow under constant mass flux conditions
by Darbyshire & Mullin (1995).

A significant recent theoretical development in pipe flow has been the discov-
ery of the first alternative solutions to the unidirectional, steady Hagen-Poiseuille
flow in the problem. These take the form of travelling waves (TWs) which appear
through saddle node bifurcations for Re ≥ 773 with upper (high wall shear stress)
and lower branch (low wall shear stress) solutions and are immediately unstable,
although intriguingly, only in a very small number of directions in state space.
They were first found by searching within discrete rotational symmetry subspaces
(Faisst & Eckhardt 2003, Wedin & Kerswell 2004) but later, TWs with no rota-
tional symmetry were also isolated (Pringle & Kerswell 2007). Each TW family is
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Figure 3. Plot of A versus Re for six azimuthal jets, each with diameter d = 0.5 mm.
Disturbances with amplitudes above the threshold gave rise to puffs, slugs or turbulence
downstream. Those below the line decayed within 100 D. Each point represents a minimum
of 40 runs of the experiment. The filled symbols denote a lower bound of Re for stable puffs.
They were obtained by keeping A constant and observing whether puffs relaminarised
within the length of the pipe. The data points marked with a X are from Hof et al. (2003)
and those with �, � are from Peixinho and Mullin (2007).

parameterized by its axial wavenumber which, at a given Re, has finite range (e.g.
see figures 3 & 4 of Kerswell 2005). The significance of these solutions is that they
present saddle points in phase space whose stable and unstable manifolds can tangle
with each other to create a composite object (either a chaotic saddle or attractor)
which is able to sustain orbits away from the laminar state for long times. At least
initially, the hope was that the emergence of these solutions as Re increases would
provide a good estimator for transition. However rotationally-asymmetric TWs have
now been found down at Re = 773 (Pringle & Kerswell 2007) which is under 50%
of Relow. Exactly, why transition is delayed so long in Re remains an intriguing
issue.

The outline of this article is as follows. In section 2, we discuss results on thresh-
old amplitudes of different disturbances needed to trigger transition. Experimental
and numerical results on the relaminarisation problem are described in section 3.
Evidence collected thus far on the significance of TWs in transition is summarised
in section 4, and section 5 provides a brief perspective on what we consider to be
some of the outstanding issues.

2. Triggering Turbulence: Amplitude Thresholds

As early as 1883, Reynolds realised that a finite amplitude disturbance is required
to trigger transition and that the laminar flow becomes more and more sensitive to
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background disturbances as Re increases. In order to establish whether the thresh-
old for transition depends systematically with Re, control of the disturbance needs
to be established. The exact positioning of the disturbance is also important as a
distinction needs to be drawn between disturbances added to the inlet and those in-
troduced into developed flow. Adding disturbances to developing flow is important
for practical applications but making contact with theory is difficult since there is
complex interaction between the developing base flow and any added disturbance.
Binnie & Fowler (1947) showed that these interactions could produce surprisingly
long transient effects. Hence we focus here on the effects of adding finite amplitude
perturbations to the well-defined case of fully-developed Hagen-Poiseuille flow.

Darbyshire & Mullin (1995) established the possibility of systematic dependence
of the threshold amplitude for disturbances added to fully developed flow. However,
a scaling could not be extracted from their results and it was Hof et al. (2003) who
showed that the threshold amplitude A (defined by the mass flux) of a synchronised
6-azimuthal jet disturbance has a scaling of A ∼ Re−1 over a significant range.
These results are reproduced in figure 3 where additional data points have been
added from recent work by Peixinho & Mullin (2007) who also showed that a
disturbance created by a single jet scales as Re−1. Disturbance amplitudes which are
below the threshold decay as they propagate downstream. The decay was normally
complete within 100D. For disturbance amplitudes above the threshold, transition
took place within 100D and the state achieved was either a puff or slug depending
on Re. Each data point was obtained by repeating the experiment around 40 times
since the threshold is a statistical process as discussed by Darbyshire & Mullin
(1995). The left-hand set of points which are nearly vertical illustrate that there is
an extreme dependence of the disturbance amplitude on Re, now appreciated to be
related to the transition from turbulence. This is discussed in the following section,
where an alternative strategy was required to explore this region systematically.

The key feature of the experiment used to obtain the results shown in figure 3
was to use a boxcar-shaped disturbance which allowed the amplitude and timescales
of the applied disturbance to be separated. Recently, Peixinho & Mullin (2007)
have revisited this experiment using a ‘push-pull’ disturbance in the form of a jet
and outlet pair which ensures that no net mass is added. Careful orientation of
this jet and outlet with respect to the pipe axis was found to excite streaks and
hairpin vortices. The threshold amplitude scalings were found to vary significantly
from A ∼ Re−1 with scalings of A ∼ Re−1.3 when orientated in a spanwise or
streamwise sense and A ∼ Re−1.5 for 45o oblique orientation to the streamwise
direction. Significantly, the amplitude thresholds for the push-pull disturbances
were an order of magnitude less than those for jets implying that transition can be
triggered much more easily by oblique vortices than jet disturbances. The exponents
indicate that transient growth effects may be relevant and this is supported by
observations of sequential transition sequence through streaks and hairpins. The
creation of a hairpin vortex sequence has recently been confirmed numerically by
Asen et al. (2008). In summary, crossing the divide between laminar and turbulent
flows is generally a catastrophic process but careful design of the disturbance can
reveal a more gradual transition where stronger contact with numerical simulations
can be made.

Numerically, the challenge in making contact with experiments is replicating
details of the spatially-localised nature of the initial disturbance applied in the lab-
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Figure 4. The mean half life τ plotted against Re for experimental data (blue squares; from
Peixinho & Mullin 2006) and numerical simulations (red bullets; from Willis & Kerswell
2007) for linear-linear and log-linear (inset) axes. The error bar for the numerical data
point at Re = 1860 on the main plot is smaller than the actual symbol.

oratory. Testing when turbulence is triggered by a global smooth disturbance is a
more natural first step. Mellibovsky and Meseguer (2006) have examined the sta-
bility of pairs of axially-independent streamwise vortices to disturbances periodic
along the axis. They obtained the scaling laws A ∼ Re−1 for 3 pairs, A ∼ Re−1.1

for 2 pairs and A ∼ Reγ where −1.5 ≤ γ ≤ −1.35 for a lone pair of vortices.
Subsequently, they have developed an ingenious localised body forcing to simulate
a 6-fold jet disturbance and find results which agree with Hof et al. (2003) for Re
> 4000 (Mellibovsky & Meseguer 2007). This variability of scaling threshold with
exact disturbance structure has been emphasized recently by other calculations
exploring the flow dynamics artificially confined to the laminar-turbulent bound-
ary. This boundary separates initial conditions which immediately laminarise from
those which become turbulent. An initial condition placed precisely in this bound-
ary will then by definition do neither, instead walking an interesting ‘dynamical’
tightrope between these two scenarios. The large-time behaviour of trajectories on
this boundary is chaotic (Schneider et al. 2007), typical energies of which give an-
other estimate of the threshold energy for transition (e.g. see figure 4 from Schneider
et al. 2007 and figure 8b of Willis & Kerswell 2008b, which finds an A ∼ Re−1.5 scal-
ing). Many travelling waves are found to be embedded in this boundary (Duguet et

al. 2008). The direction from which this long-term behaviour within the boundary
is approached, which may include an initial period of significant growth, explains
the variation in scaling laws seen. The closest point of approach (in energy norm)
of the laminar-turbulent boundary to the laminar state defines the most dangerous
initial condition of all.
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3. Relaminarisation: Threshold Re for Sustained Puffs

Regardless of the exact structure of the disturbance, the amplitude thresholds show
a divergence at Re small enough (e.g. see figure 3), indicating that below a thresh-
old Relow turbulence cannot be sustained. Identifying this threshold directly in
experiments by adding very large disturbances is fraught with difficulty since sig-
nificant distortion of the mean flow can result as discussed by Mullin & Peixinho
(2005,2006). Peixinho & Mullin (2006) developed an alternative experimental pro-
tocol in which the relaminarisation of turbulence was considered for Re < Relow.
They created a puff of the type shown in figure 1 for Re > Relow in fully-developed
flow using a well-defined disturbance. The puff was allowed to reach a developed
‘equilibrium’ state, before Re was reduced in a controlled way to a selected value
below Relow. The statistics of how far the puff propagated before relaminarising
was recorded over a large number of runs at the same Re. The probability of a puff
lasting to a given distance was found to decay exponentially on average indicating
a memoryless process (the probability of a puff relaminarising in a given distance
or time interval depended only on the size of the interval). A well-defined half-life
τ could be extracted for this process which satisfied the remarkably simple scaling
relation τ ∼ (1750 − Re)−1, predicting that puff turbulence became sustained at
Relow = 1750. This is in accord with estimates of Re at which large amplitude per-
turbations do not give rise to transition downstream using a selection of different
disturbances.

A notable advantage of this experimental protocol is that the procedure can be
repeated using direct numerical simulations since the dependence on initial con-
ditions has been effectively removed. Numerical investigations were carried out in
a pipe 50D long across which periodic boundary conditions were applied, using
over 3 million degrees of freedom and observing simulated puffs for times of up to
1000D/U (Willis & Kerswell 2007). Random snap-shots from a long puff evolu-
tion generated at Re = 1900 were used to initiate a series of puff runs at a given
Re < 1900. The same exponential probability distribution emerged as in experi-
ments with the mean half life scaling like τ ∼ (1870−Re)−1 indicating an estimate
for Relow only 7% above the experimental value: see figure 4. Given the sensitivity
of the relaminarisation process and the different errors influencing the experiments
and numerics, this correspondence, the first between theory and experiment in this
problem, represents a significant success.

4. Coherent Structures in Pipe Turbulence

The initial discovery of TWs in pipe flow (Faisst & Eckhardt 2003, Wedin & Ker-
swell 2004) was closely followed by the first experimental sightings using PIV mea-
surements in puffs and slugs (Hof et al. 2004). Subtracting the equivalent laminar
state from the instantaneous flow field, clearly showed periodically-arranged fast
streaks near the pipe wall and, at least for the puff cross-sections, interior slow
streak structures which resembled those of the TWs (see figure 2 of Hof et al.
2004). The fact that these waves could appear, albeit transiently, as coherent struc-
tures in a turbulent flow was a landmark realisation in the shear flow community —
that unstable solutions could be dynamically relevant. From a dynamical systems
standpoint, this was merely emphasizing that saddle points can be just as impor-
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Figure 5. Appearance of TW-like structures upstream and downstream of the trailing
edge zTE in a snap-shot of a puff. In the cross-sections three- and four-fold rotationally
symmetric flow fields are found at z = zTE + 4D and z = zTE − 3D. Contours are of
the streamwise velocity anomaly relative to the laminar flow: red(dark)/white indicating
slower/faster moving fluid. Directly underneath is the contour plot of the correlation func-

tion C(θ, z) := 2 〈u
′

z(θ + φ, z) u
′

z(φ, z)〉φ/〈maxφ,z(u
′

z)
2〉t evaluated at r = 0.4D, where u

′

z

is the deviation from the time-averaged profile calculated at each z − zTE station; shown
over the full periodic 50 D domain. 〈 · 〉s indicates averaging over the subscripted variable.
C(θ, z) is used to identify coherent fast streak structures. Below this are (r, z)-sections of
the axial vorticity ω, the radial velocity u and the streamwise velocity difference w from
the laminar flow. Contours are at 0.001,0.01 and 0.1 in units of U/D (ω) or U (u, w) with
the darkest colour indicating data > 0.1 and white data < 0.001. The plots show that ω
and u decay much more quickly than w. The decay of the azimuthal velocity component
(not shown) is like that of u.

tant as attracting fixed points in organising phase space. Follow-up experimental
work by Hof et al. (2005) in turbulent puffs concentrated upon finding evidence
for the ‘self-sustaining cycle’ (Waleffe 1995,1997). This is the name given to the
process whereby streamwise rolls, streaks and wavelike structures symbiotically co-
exist feeding energy to, and receiving energy from, each other and underpins the
existence of the TWs (Wedin & Kerswell 2004).

Attempts at quantifying how closely and how frequently TWs were approached
by turbulent pipe flows came later utilising short 5D long pipe numerical simula-
tions. Kerswell & Tutty (2007) used a projection approach whereby the instanta-
neous flow field was projected in turn onto the velocity fields of all known TWs
(prior to Pringle & Kerswell 2007) in a pipe of that length. Good ‘overlaps’ indicat-
ing near-realisations of a TW were found to occur for ≈ 10% of the time. Schneider
et al. (2007a) examined a streamwise velocity correlation function evaluated near
the pipe wall to identify fast-streak coherent structures finding a higher incident
rate consistent with a more inclusive criterion. While initiating their turbulent runs,
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Figure 6. Roll and streak energies at different parts of a puff at Re = 2000. For the
velocity field expanded in Fourier modes m in θ, the z-dependent total streak and
roll energies (blue dashed) are defined as Estreak(z, t) := π Re2

�
m6=0 � |u′

m z|
2r dr and

Eroll(z, t) := π Re2
�

m6=0 � (|u′
m r|

2 + |u′
m θ|

2) r dr, units ρν2. Here ~u′ = (u′
r, u

′
θ, u

′
z) is the

deviation from the laminar profile, for easier comparison with the exact TW solutions (red
solid lines). Energies for known travelling waves, marked ‘TW’, are parameterised by the
continuum of axial wavenumbers permitted, are fairly low. The 3 ‘TW’ lines correspond
to waves with 2-fold, 3-fold and 4-fold discrete rotational symmetry about the axis (lower
thick, thin middle and upper thick lines respectively).

Kerswell & Tutty (2007) discovered that all the lower branch TWs they tried sat
in the laminar-turbulent boundary: using the TW perturbed slightly along its most
unstable direction led to a turbulent evolution whereas perturbing in the opposite
sense led immediately to smooth relaminarisation. They also found that some of
the upper branch TWs sat within the turbulent attractor at Re = 2400, according
to kinetic energy and wall shear-stress measures.

Further numerical work in 5D pipes has recently focused on the laminar-turbulent
boundary with Schneider et al. (2007) finding a chaotic attractor there in which
the flow on average has a fascinatingly simple structure: two fast streaks sandwich-
ing a slow streak near the pipe wall. This was later identified as an asymmetric
TW (Pringle & Kerswell 2007) which appears to represent the minimal coherent
unit which can exist. This TW was found to bifurcate from a mirror-symmetric
counterpart born at Re = 773, considerably lower than the Re = 1251 threshold
found earlier for TWs with discrete rotational symmetry (Faisst & Eckhardt 2003,
Wedin & Kerswell 2004). Work by Duguet at al. (2008) examining trajectories on
the laminar-turbulent boundary has found evidence for repeated visits to other
new TWs and heteroclinic connections between TWs likely to support complicated
dynamics.
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Figure 7. Flow visualization of wave at Re = 1740 after reduction in Re from 1900.

In longer pipes, Willis & Kerswell (2008a) have used a 2-space 1-time streamwise
correlation function to search for evidence of fast streak coherent structures in tur-
bulent puffs. A significant subset of observed coherence bear a strong resemblance
to travelling wave structures in regions upstream and downstream of the trailing
edge (at zTE), i.e. away from the most turbulently energetic area of the puff; an
example from the calculation with 34 million degrees of freedom is shown in figure
5. Examining the partitioning of the energy into the roll and streak fields shows
that there is near equipartitioning of energy between these two structures at the
trailing edge whereas the defining characteristic of the TWs (both upper and lower
branches) is the fact that the roll energy is typically at least an order of magnitude
smaller than the streak energy; see figure 6. The conclusion drawn from this is that
at Re = 2000 the TWs sit in an intermediate region of phase space removed from
the turbulence, realised locally at zTE . As a puff travels at only ≈ 0.9U , fluid, on
average, passes through it. Far upstream (z − zTE → −∞), the fluid ‘trajectory’
starts at the origin (laminar state), passes through the TW-region of phase space
as z increases, to reach the fully turbulent region near the trailing edge. Down-
stream of the trailing edge, the trajectory passes back through the TW region to
relaminarise as z − zTE → +∞. Consequently, TWs are only visited just up- and
down- stream of the trailing edge: see figure 6 for a 2-dimensional realisation of
this. This picture of travelling waves being visited on relaminarisation resonates
with some experimental observations reported by Peixinho & Mullin (2006). Dur-
ing their relaminarisation experiments, they sometimes noticed transient wavelike
structures downstream of the trailing edge. A flow visualization of a transient state
at Re = 1740 is shown in figure 7. The evident wavelike structures were realized in
≈ 10% of the experimental runs and they have the characteristic form of a travelling
wave with 2-fold discrete rotational symmetry and a wavelength of 1.5D.

Most recent experimental evidence for the existence of travelling waves is pro-
vided by the investigations of Peixinho & Mullin (2007). Using a push-pull distur-
bance aligned obliquely to the flow, they found a sequential onset process rather
than the abrupt transition associated with the Re−1 threshold found by Hof et al.
(2003). Moreover, hairpin vortices were formed in the initial stages of transition
for disturbance amplitudes close to threshold, and may be interpreted as TWs. An
example of the creation of hairpin vortices during transition is given in the set of
flow visualization images shown in figure 8 at Re = 2200. The waves can clearly be
seen in the top image which was taken 0.1 seconds after the push-pull disturbance
was started. The propagating disturbance was tracked using a moving camera and
the rapid breakdown to a puff can be seen. The trailing edge of the disturbance has
only moved ∼ 4D (0.6 secs) before significant disorder appears.
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Figure 8. A sequence of flow visualization images showing the development of a disturbance
from the oblique push-pull perturbation with A = 0.0023 at Re = 2200. The disturbance
was injected in the plane of the photograph . Images were taken at (a) 0.1, (b) 0.2, (c) 0.6,
(d) 1 and (e) 1.5 seconds after the beginning of the injection using a camera travelling at
the same speed as the flow

5. Outlook

Despite the successes discussed above, many challenges still loom large. For ex-
ample, why does a localised spatially-inhomogeneous turbulent structure which is
the puff exist at all? How is the turbulence at the trailing edge able to remain
localised? Is this region a valuable microcosm of global slug turbulence? And, of
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course, how can we characterise, predict and perhaps control the fully-developed
turbulent state itself? The recent discovery of streaks and hairpin structures sug-
gests that the strategy adopted by Fransson et al. (2006) for enhancing stability of
laminar flow in boundary layers may be useful for pipe flows. The most dangerous
part of the pipe for transition is the entrance region where disturbances can grow
considerably before Hagen-Poiseuille flow is established. Controlling this using a
grooved contraction to promote streamwise rolls and hence streaks may lead to
control methods. As discussed above, Hagen-Poiseuille flow seems to be remark-
ably robust in practice and, hence, once it is established it is likely to be stable to
disturbances of a predictable amplitude.

The phenomena described in this article all have plausible explanations using
low-order dynamical systems theory. For example, the inferred global bifurcation
of §3 at which transient puffs become sustained can be understood as a boundary
crisis in reverse, that is, an attractor is born as Re increases beyond the bifurcation
point rather than being destroyed. Furthermore, the attractor itself and its leaky
predecessor can be understood as the consequence of a tangle of homoclinic and
heteroclinic connections between TW saddle points and other generic objects such
as periodic orbits. At present, however, a step of faith has to be taken to make
these connections. Pipe flow is, after all, the archetypal spatiotemporal system
which specialises, at least at transitional Re, in selecting localised flows rather than
global structures more immediately suited to a dynamical systems interpretation.
Constructing the correct formalism to bridge this ‘PDE to ODE’ gap remains an
outstanding challenge, not only in the pipe problem but in fluid mechanics as a
whole.

Finally, it should hopefully be clear from this article that significant progress
in the pipe flow problem has been recently achieved through the coordinated use
of all three methodologies: experimentation, numerical simulation and theory. This
balanced three-pronged attack will surely remain the ideal approach in exploring
and understanding fluid mechanical phenomena in the 21st century.

The work was funded by EPSRC via grants GR/S76137/01 and GR/S76144/01 and the
award of a Senior Research Fellowship to TM.
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